LED顯示屏是LED點(diǎn)陣模塊或者像素單元組成的平面顯示屏幕。自從誕生以來,以其亮度高、視角廣、壽命長(zhǎng)、性價(jià)比高的特點(diǎn),在交通、廣告、新聞發(fā)布、體育比賽、電子景觀等領(lǐng)域得到了廣泛應(yīng)用。 LED顯示屏控制器作為控制LED屏顯示圖像、數(shù)據(jù)的關(guān)鍵,是整個(gè)LED視頻顯示系統(tǒng)的核心。本文研究的是對(duì)全彩色同步LED屏的控制,控制LED屏同步顯示在上位機(jī)顯示系統(tǒng)中某固定位置處的圖像。根據(jù)已有的LED顯示屏及其驅(qū)動(dòng)器的特點(diǎn),提出了一種可行的方案并進(jìn)行了設(shè)計(jì)。系統(tǒng)主要分為兩個(gè)部分:視頻信號(hào)的獲取,視頻信號(hào)的處理。 經(jīng)過分析比較,決定從顯卡的DVI接口獲得視頻源,視頻源經(jīng)過DVI解碼芯片TFP401A的解碼后,可以獲得圖像的數(shù)字信息,這些信息包括紅、綠、藍(lán)三基色的數(shù)據(jù)以及行同步、場(chǎng)同步、使能等控制信號(hào)。這些信號(hào)將在視頻信號(hào)處理模塊中被使用。 信號(hào)處理模塊在接收視頻信號(hào)源后,對(duì)數(shù)據(jù)進(jìn)行處理,最后輸出數(shù)據(jù)給驅(qū)動(dòng)電路。在信號(hào)處理模塊中,采用了可編程邏輯器件FPGA來完成。可編程邏輯器件具有高集成度、高速度、高可靠性、在線可編程(ISP)等特點(diǎn),所以特別適合于本設(shè)計(jì)。利用FPGA的可編程性,在FPGA內(nèi)部劃分了各個(gè)小模塊,各小模塊中通過少量的信號(hào)進(jìn)行聯(lián)系,這樣就將比較大的系統(tǒng)轉(zhuǎn)化成許多小的系統(tǒng),使得設(shè)計(jì)更加簡(jiǎn)單,容易驗(yàn)證。本文分析了驅(qū)動(dòng)電路所需要的數(shù)據(jù)的特點(diǎn),全彩色灰度級(jí)的實(shí)現(xiàn)方式,決定把系統(tǒng)劃分為視頻源截取、RGB格式轉(zhuǎn)化、位平面分離、讀SRAM地址發(fā)生器、寫SRAM地址發(fā)生器、讀寫SRAM選擇控制器、灰度實(shí)現(xiàn)等模塊。 最后利用示波器和SignalTap II邏輯分析儀等工具,對(duì)系統(tǒng)進(jìn)行了聯(lián)合調(diào)試。改進(jìn)了時(shí)序、優(yōu)化了布局布線,使得系統(tǒng)性能得到了良好的改善。 在分析了所需要的資源的基礎(chǔ)上,課題決定采用Altera的Cyclone EP1C12 FPGA設(shè)計(jì)視頻信號(hào)處理模塊,在Quartus II和modelsim平臺(tái)下,用Verilog HDL語言開發(fā)。
上傳時(shí)間: 2013-05-19
上傳用戶:玉簫飛燕
數(shù)字D類音頻放大器,也叫數(shù)字脈沖調(diào)制放大器,具有效率高,低電壓,低失真的特點(diǎn),在低成本,高性能的消費(fèi)類產(chǎn)品特別是便攜式設(shè)備中得到越來越廣泛的應(yīng)用。數(shù)字D類放大器包括數(shù)字脈沖寬度調(diào)制(PWM)和輸出級(jí)(含低通濾波器)兩個(gè)部分,數(shù)字PWM又包括兩個(gè)部分,采樣處理和脈沖產(chǎn)生。傳統(tǒng)的采樣處理算法運(yùn)算復(fù)雜,硬件實(shí)現(xiàn)成本高,面積大,從而導(dǎo)致功耗也大,不適合當(dāng)今向低功耗發(fā)展的趨勢(shì)。 本文在傳統(tǒng)算法的基礎(chǔ)上提出了一種新的算法,該算法不包括乘法或者除法這些計(jì)算復(fù)雜和非常消耗硬件資源的單元,只含加法和減法運(yùn)算。在推導(dǎo)出該算法的傅立葉表達(dá)式后,在MATLAB的simulink中建立系統(tǒng)模型進(jìn)行仿真以驗(yàn)證算法的可行性,在輸入信號(hào)頻率為1kHZ,采樣頻率為48kHZ,電源電壓為10V,輸出負(fù)載為4Ω的條件下,得到的總諧波失真為0.12%,符合D類放大器的性能要求。本文還在基于Xilinx公司的Spartan-3系列FPGA的基礎(chǔ)上實(shí)現(xiàn)了該算法的電路結(jié)構(gòu),綜合結(jié)果表明,實(shí)現(xiàn)基于本文算法的數(shù)字D類音頻系統(tǒng)所需要的硬件資源大大減少,從而減少了功耗。 關(guān)鍵詞:D類放大器;脈沖寬度調(diào)制;采樣算法;數(shù)字音頻放大器;FPGA
上傳時(shí)間: 2013-07-19
上傳用戶:zhuoying119
現(xiàn)代社會(huì)信息量爆炸式增長(zhǎng),由于網(wǎng)絡(luò)、多媒體等新技術(shù)的發(fā)展,用戶對(duì)帶寬和速度的需求快速增加。并行傳輸技術(shù)由于時(shí)鐘抖動(dòng)和偏移,以及PCB布線的困難,使得傳輸速率的進(jìn)一步提升面臨設(shè)計(jì)的極限;而高速串行通信技術(shù)憑借其帶寬大、抗干擾性強(qiáng)和接口簡(jiǎn)單等優(yōu)勢(shì),正迅速取代傳統(tǒng)的并行技術(shù),成為業(yè)界的主流。 本論文針對(duì)目前比較流行并且有很大發(fā)展?jié)摿Φ膬煞N高速串行接口電路——高速鏈路口和Rocket I/O進(jìn)行研究,并以Xilinx公司最新款的Virtex-5 FPGA為研究平臺(tái)進(jìn)行仿真設(shè)計(jì)。本論文的主要工作是以某低成本相控陣?yán)走_(dá)信號(hào)處理機(jī)為設(shè)計(jì)平臺(tái),在其中的一塊信號(hào)處理板上,進(jìn)行了基于LVDS(Low VoltageDifferential Signal)技術(shù)的高速LinkPort(鏈路口)設(shè)計(jì)和基于CML(Current ModeLogic)技術(shù)的Rocket I/O高速串行接口設(shè)計(jì)。首先在FPGA的軟件中進(jìn)行程序設(shè)計(jì)和功能、時(shí)序的仿真,當(dāng)仿真驗(yàn)證通過之后,重點(diǎn)是在硬件平臺(tái)上進(jìn)行調(diào)試。硬件調(diào)試驗(yàn)證的方法是將DSP TS201的鏈路口功能與在FPGA中的模擬高速鏈路口相連接,進(jìn)行數(shù)據(jù)的互相傳送,接收和發(fā)送的數(shù)據(jù)相同,證明了高速鏈路口設(shè)計(jì)的正確性。并且在硬件調(diào)試時(shí)對(duì)Rocket IO GTP收發(fā)器進(jìn)行回環(huán)設(shè)計(jì),經(jīng)過回環(huán)之后接收到的數(shù)據(jù)與發(fā)送的數(shù)據(jù)相同,證明了Rocket I/O高速串行接口設(shè)計(jì)的正確性。
上傳時(shí)間: 2013-04-24
上傳用戶:戀天使569
互感器是電力系統(tǒng)中電能計(jì)量和繼電保護(hù)中的重要設(shè)備,其精度和可靠性與電力系統(tǒng)的安全性、可靠性和經(jīng)濟(jì)運(yùn)行密切相關(guān)。隨著電力工業(yè)的發(fā)展,傳統(tǒng)的電磁式互感器已經(jīng)暴露出一系列的缺陷,電子式互感器能很好的解決電磁式互感器的缺點(diǎn),電子式互感器逐步替代電磁式互感器代表著電力工業(yè)的發(fā)展方向。目前,國(guó)產(chǎn)的互感器校驗(yàn)儀主要是電磁式互感器校驗(yàn)儀,電子式互感器校驗(yàn)儀依賴于進(jìn)口。電子式互感器的發(fā)展,使得電子式互感器校驗(yàn)儀的研制勢(shì)在必行。 本課題依據(jù)國(guó)際標(biāo)準(zhǔn)IEC60044-7、IEC60044-8和國(guó)內(nèi)標(biāo)準(zhǔn)GB20840[1].7-2007、GB20840[1].8-2007,設(shè)計(jì)了電子式互感器檢驗(yàn)儀。該校驗(yàn)儀采用直接法對(duì)電子式互感器進(jìn)行校驗(yàn),即同時(shí)測(cè)試待校驗(yàn)電子式互感器和標(biāo)準(zhǔn)電磁式互感器二次側(cè)的輸出信號(hào),比較兩路信號(hào)的參數(shù),根據(jù)比較結(jié)果完成電子式互感器的校驗(yàn)工作。論文首先介紹了電子式互感器結(jié)構(gòu)及輸出數(shù)字信號(hào)的特征,然后詳細(xì)論述了電子式互感器校驗(yàn)儀的硬件及軟件設(shè)計(jì)方法。硬件主要采用FPGA技術(shù)設(shè)計(jì)以太網(wǎng)控制器RTL8019的控制電路,以實(shí)現(xiàn)電子式互感器信號(hào)的遠(yuǎn)程接收,同時(shí)設(shè)計(jì)A/D芯片MAX125的控制電路,以實(shí)現(xiàn)標(biāo)準(zhǔn)電磁式互感器模擬輸出的數(shù)字化。軟件主要采用FPGA的SOPC技術(shù),研制了MAX125和RTL8019的IP核,在NiosIIIDE集成開發(fā)環(huán)境下,完成對(duì)硬件電路的底層控制,運(yùn)用準(zhǔn)同步算法和DFT算法開發(fā)應(yīng)用程序?qū)崿F(xiàn)對(duì)數(shù)字信號(hào)的處理。最終完成電子式互感器校驗(yàn)儀的設(shè)計(jì)。 最后進(jìn)行了相關(guān)的實(shí)驗(yàn),所研制的電子式互感器校驗(yàn)儀對(duì)0.5準(zhǔn)確級(jí)的電子式電壓互感器和0.5準(zhǔn)確級(jí)電子式電流互感器分別進(jìn)行了校驗(yàn),對(duì)其額定負(fù)荷的20%、100%、120%點(diǎn)做為測(cè)量點(diǎn)進(jìn)行測(cè)量。經(jīng)過對(duì)實(shí)驗(yàn)數(shù)據(jù)的處理分析可知,校驗(yàn)儀對(duì)電子式互感器的校驗(yàn)精度滿足0.5%的比差誤差和20’的相位差。本課題的研究為電子式互感器校驗(yàn)儀的研制工作提供了理論和實(shí)踐依據(jù)。
標(biāo)簽: FPGA 電子式互感器 校驗(yàn)儀
上傳時(shí)間: 2013-04-24
上傳用戶:569342831
隨著社會(huì)的發(fā)展,人們對(duì)電力需求特別是電能質(zhì)量的要求越來越高。但由于非線性負(fù)荷大量使用,卻帶來了嚴(yán)重的電力諧波污染,給電力系統(tǒng)安全、穩(wěn)定、高效運(yùn)行帶來嚴(yán)重影響,給供用電設(shè)備造成危害。如何最大限度的減少諧波造成的危害,是目前電力系統(tǒng)領(lǐng)域極為關(guān)注的問題。諧波檢測(cè)是諧波研究中重要分支,是解決其它相關(guān)諧波問題的基礎(chǔ)。因此,對(duì)諧波的檢測(cè)和研究,具有重要的理論意義和實(shí)用價(jià)值。 目前使用的電力系統(tǒng)諧波檢測(cè)裝置,大多基于微處理器設(shè)計(jì)。微處理器是作為整個(gè)系統(tǒng)的核心,它的性能高低直接決定了產(chǎn)品性能的好壞。而這種微處理器為主體構(gòu)成的應(yīng)用系統(tǒng),存在效率低、資源利用率低、程序指針易受干擾等缺點(diǎn)。由于微電子技術(shù)的發(fā)展,特別是專用集成電路ASIC(ApplicationSpecificIntegratedCircuit)設(shè)計(jì)技術(shù)的發(fā)展,使得設(shè)計(jì)電力系統(tǒng)諧波檢測(cè)專用的集成電路成為可能,同時(shí)為諧波檢測(cè)裝置的硬件設(shè)計(jì)提供了一個(gè)新的發(fā)展途徑。本文目標(biāo)就是設(shè)計(jì)電力系統(tǒng)諧波檢測(cè)專用集成電路,從而可以實(shí)現(xiàn)對(duì)電力系統(tǒng)諧波的高精度檢測(cè)。采用專用集成電路進(jìn)行諧波檢測(cè)裝置的硬件設(shè)計(jì),具有體積小,速度快,可靠性高等優(yōu)點(diǎn),由于應(yīng)用范圍廣,需求量大,電力系統(tǒng)諧波檢測(cè)專用集成電路具有很好的應(yīng)用前景。 本文首先介紹了國(guó)內(nèi)外現(xiàn)行諧波檢測(cè)標(biāo)準(zhǔn),調(diào)研了電力系統(tǒng)諧波檢測(cè)的發(fā)展趨勢(shì);隨后根據(jù)裝置的功能需求,特別是依據(jù)其中諧波檢測(cè)國(guó)標(biāo)參數(shù)的測(cè)量算法,為系統(tǒng)選定了基于FPGA的SOPC設(shè)計(jì)方案。 本文分析了電力系統(tǒng)諧波檢測(cè)專用集成電路的功能模型,對(duì)專用集成電路進(jìn)行了模塊劃分。定義了各模塊的功能,并研究了模塊間的連接方式,給出了諧波檢測(cè)專用集成電路的并行結(jié)構(gòu)。設(shè)計(jì)了基于FPGA的諧波檢測(cè)專用集成電路設(shè)計(jì)和驗(yàn)證的硬件平臺(tái)。配合專用集成電路的電子設(shè)計(jì)自動(dòng)化(EDA)工具構(gòu)建了智能監(jiān)控單元專用集成電路的開發(fā)環(huán)境。 在進(jìn)行FPGA具體設(shè)計(jì)時(shí),根據(jù)待實(shí)現(xiàn)功能的不同特點(diǎn),分為用戶邏輯區(qū)域和Nios處理器模塊兩個(gè)部分。用戶邏輯區(qū)域控制A/D轉(zhuǎn)換器進(jìn)行模擬信號(hào)的采樣,并對(duì)采樣得到的數(shù)字量進(jìn)行諧波分析等運(yùn)算。然后將結(jié)果存入片內(nèi)的雙口RAM中,等待Nios處理器的訪問。Nios處理器對(duì)數(shù)據(jù)處理模塊的結(jié)果進(jìn)一步處理,得到其各自對(duì)應(yīng)的最終值,并將結(jié)果通過串行通信接口發(fā)送給上位機(jī)。 最后,對(duì)設(shè)計(jì)實(shí)體進(jìn)行了整體的編譯、綜合與優(yōu)化工作,并通過邏輯分析儀對(duì)設(shè)計(jì)進(jìn)行了驗(yàn)證。在實(shí)驗(yàn)室條件下,對(duì)監(jiān)測(cè)指標(biāo)的運(yùn)算結(jié)果進(jìn)行了實(shí)驗(yàn)測(cè)量,實(shí)驗(yàn)結(jié)果表明該監(jiān)測(cè)裝置滿足了電力系統(tǒng)諧波檢測(cè)的總體要求。
標(biāo)簽: FPGA 電力系統(tǒng) 諧波檢測(cè)
上傳時(shí)間: 2013-04-24
上傳用戶:yw14205
高速、高精度已經(jīng)成為伺服驅(qū)動(dòng)系統(tǒng)的發(fā)展趨勢(shì),而位置檢測(cè)環(huán)節(jié)是決定伺服系統(tǒng)高速、高精度性能的關(guān)鍵環(huán)節(jié)之一。光電編碼器作為伺服驅(qū)動(dòng)系統(tǒng)中常用的檢測(cè)裝置,根據(jù)結(jié)構(gòu)和原理的不同分為增量式和絕對(duì)式。本文從原理上對(duì)增量式光電編碼器和絕對(duì)式光電編碼器做了深入的分析,通過對(duì)比它們的特性,得出了絕對(duì)式光電編碼器更適合高速、高精度伺服驅(qū)動(dòng)系統(tǒng)的結(jié)論。 絕對(duì)式光電編碼器精度高、位數(shù)多的特點(diǎn)決定其通信方式只能采取串行傳輸方式,且由相應(yīng)的通信協(xié)議控制信息的傳輸。本文首先針對(duì)編碼器主要生產(chǎn)廠商日本多摩川公司的絕對(duì)式光電編碼器,深入研究了通信協(xié)議相關(guān)的硬件電路、數(shù)據(jù)幀格式、時(shí)序等。隨后介紹了新興的電子器件FPGA及其開發(fā)語言硬件描述語言Verilog HDL,并對(duì)基于FPGA的絕對(duì)式編碼器通信接口電路做了可行性的分析。在此基礎(chǔ)上,采用自頂向下的設(shè)計(jì)方法,將整個(gè)接口電路劃分成發(fā)送模塊、接收模塊、序列控制模塊等多個(gè)模塊,各個(gè)模塊采用Verilog語言進(jìn)行描述設(shè)計(jì)編碼器接口電路。最終的設(shè)計(jì)在相關(guān)硬件電路上實(shí)現(xiàn)。最后,通過在TMS320F2812伺服控制平臺(tái)上編寫的硬件驅(qū)動(dòng)程序驗(yàn)證了整個(gè)設(shè)計(jì)的各項(xiàng)功能,達(dá)到了設(shè)計(jì)的要求。
上傳時(shí)間: 2013-07-11
上傳用戶:snowkiss2014
本文對(duì)基于FPGA的對(duì)象存儲(chǔ)控制器原型的硬件設(shè)計(jì)進(jìn)行了研究。主要內(nèi)容如下: ⑴研究了對(duì)象存儲(chǔ)控制器的硬件設(shè)計(jì),使其高效完成對(duì)象級(jí)接口的智能化管理和復(fù)雜存儲(chǔ)協(xié)議的解析,對(duì)對(duì)象存儲(chǔ)系統(tǒng)整體性能提升有重要意義。基于SoPC(片上可編程系統(tǒng))技術(shù),在FPGA(現(xiàn)場(chǎng)可編程門陣列)上實(shí)現(xiàn)的對(duì)象存儲(chǔ)控制器,具有功能配置靈活,調(diào)試方便,成本較低等優(yōu)點(diǎn)。 ⑵采用Cyclone II器件實(shí)現(xiàn)的對(duì)象存儲(chǔ)控制器的網(wǎng)絡(luò)接口,包含處理器模塊、內(nèi)存模塊、Flash模塊等核心組成部分,提供千兆以太網(wǎng)的網(wǎng)絡(luò)接口和PCI(周邊元件擴(kuò)展接口)總線的主機(jī)接口,還具備電源模塊、時(shí)鐘模塊等以保證系統(tǒng)正常運(yùn)行。在設(shè)計(jì)實(shí)現(xiàn)PCB(印制電路板)時(shí),從疊層設(shè)計(jì)、布局、布線、阻抗匹配等多方面解決高達(dá)100MHz的全局時(shí)鐘帶來的信號(hào)完整性問題,并基于IBIS模型進(jìn)行了信號(hào)完整性分析及仿真。針對(duì)各功能模塊提出了相應(yīng)的調(diào)試策略,并完成了部分模塊的調(diào)試工作。 ⑶提出了基于Virtex-4的對(duì)象存儲(chǔ)控制器系統(tǒng)設(shè)計(jì)方案,Virtex-4內(nèi)嵌PowerPC高性能處理器,可更好地完成對(duì)象存儲(chǔ)設(shè)備相關(guān)的控制和管理工作。實(shí)現(xiàn)了豐富的接口設(shè)計(jì),包括千兆以太網(wǎng)、光纖通道、SATA(串行高級(jí)技術(shù)附件)等網(wǎng)絡(luò)存儲(chǔ)接口以及較PCI性能更優(yōu)異的PCI-X(并連的PCI總線)主機(jī)接口;提供多種FPGA配置方式。使用Cadence公司的Capture CIS工具完成了該系統(tǒng)硬件的原理圖繪制,通過了設(shè)計(jì)規(guī)則檢查,生成了網(wǎng)表用作下一步設(shè)計(jì)工作的交付文件。
標(biāo)簽: FPGA 對(duì)象存儲(chǔ) 原型
上傳時(shí)間: 2013-04-24
上傳用戶:lijinchuan
國(guó)家863項(xiàng)目“飛行控制計(jì)算機(jī)系統(tǒng)FC通信卡研制”的任務(wù)是研究設(shè)計(jì)符合CPCI總線標(biāo)準(zhǔn)的FC通信卡。本課題是這個(gè)項(xiàng)目的進(jìn)一步引伸,用于設(shè)計(jì)SCI串行通信接口,以實(shí)現(xiàn)環(huán)上多計(jì)算機(jī)系統(tǒng)間的高速串行通信。 本文以此項(xiàng)目為背景,對(duì)基于FPGA的SCI串行通信接口進(jìn)行研究與實(shí)現(xiàn)。論文先概述SCI協(xié)議,接著對(duì)SCI串行通信接口的兩個(gè)模塊:SCI節(jié)點(diǎn)模型模塊和CPCI總線接口模塊的功能和實(shí)現(xiàn)進(jìn)行了詳細(xì)的論述。 SCI節(jié)模型包含Aurora收發(fā)模塊、中斷進(jìn)程、旁路FIFO、接受和發(fā)送存儲(chǔ)器、地址解碼、MUX。在SCI節(jié)點(diǎn)模型的實(shí)現(xiàn)上,利用FPGA內(nèi)嵌的RocketIO高速串行收發(fā)器實(shí)現(xiàn)主機(jī)之間的高速串行通信,并利用Aurora IP核實(shí)現(xiàn)了Aurora鏈路層協(xié)議;設(shè)計(jì)一個(gè)同步FIFO實(shí)現(xiàn)旁路FIFO;利用FPGA上的塊RAM實(shí)現(xiàn)發(fā)送和接收存儲(chǔ)器;中斷進(jìn)程、地址解碼和多路復(fù)合分別在控制邏輯中實(shí)現(xiàn)。 CPCI總線接口包括PCI核、PCI核的配置模塊以及用戶邏輯三個(gè)部分。本課題中,采用FPGA+PCI軟核的方法來實(shí)現(xiàn)CPCI總線接口。PCI核作為PCI總線與用戶邏輯之間的橋梁:PCI核的配置模塊負(fù)責(zé)對(duì)PCI核進(jìn)行配置,得到用戶需要的PCI核;用戶邏輯模塊負(fù)責(zé)實(shí)現(xiàn)整個(gè)通信接口具體的內(nèi)部邏輯功能;并引入中斷機(jī)制來提高SCI通信接口與主機(jī)之間數(shù)據(jù)交換的速率。 設(shè)計(jì)選用硬件描述語言VerilogHDL和VHDL,在開發(fā)工具Xilinx ISE7.1中完成整個(gè)系統(tǒng)的設(shè)計(jì)、綜合、布局布線,利用Modelsim進(jìn)行功能及時(shí)序仿真,使用DriverWorks為SCI串行通信接口編寫WinXP下的驅(qū)動(dòng)程序,用VC++6.0編寫相應(yīng)的測(cè)試應(yīng)用程序。最后,將FPGA設(shè)計(jì)下載到FC通信卡中運(yùn)行,并利用ISE內(nèi)嵌的ChipScope Pro虛擬邏輯分析儀對(duì)設(shè)計(jì)進(jìn)行驗(yàn)證,運(yùn)行結(jié)果正常。 文章最后分析傳輸性能上的原因,指出工作中的不足之處和需要進(jìn)一步完善的地方。
上傳時(shí)間: 2013-04-24
上傳用戶:竺羽翎2222
隨著電力電子技術(shù)、微處理器技術(shù)、控制理論及永磁材料等技術(shù)的快速發(fā)展,以永磁同步電機(jī)作為控制對(duì)象的傳動(dòng)領(lǐng)域得到了越來越廣泛的關(guān)注,隨著FPGA的技術(shù)的普及和廣泛應(yīng)用,使得各種先進(jìn)的控制算法得以實(shí)現(xiàn),于是數(shù)字化、智能化的永磁交流控制器成為必然的發(fā)展趨勢(shì)和當(dāng)前的研究熱點(diǎn)。本文的主要工作就是圍繞數(shù)字化的永磁同步電機(jī)控制器研究來展開。首先深入研究了永磁同步電機(jī)的數(shù)學(xué)建模方法及電機(jī)控制策略問題。在對(duì)永磁同步電機(jī)的數(shù)學(xué)模型進(jìn)行了推導(dǎo)的基礎(chǔ)上,在PSIM仿真軟件中建立了永磁同步電機(jī)的電機(jī)模型,提出了一種永磁同步電機(jī)傳統(tǒng)控制系統(tǒng)仿真建模的新方法。其次對(duì)常用的數(shù)字脈寬調(diào)制方法進(jìn)行了數(shù)學(xué)推導(dǎo),并對(duì)滑模控制理論和矢量控制進(jìn)行了深入的研究分析,將滑模變結(jié)構(gòu)控制應(yīng)用于永磁同步電機(jī)的調(diào)速系統(tǒng)中,改善了傳統(tǒng)PI控制器參數(shù)整定繁瑣、系統(tǒng)魯棒性差的缺點(diǎn),仿真結(jié)果驗(yàn)證了該系統(tǒng)設(shè)計(jì)方案的優(yōu)越性。最后在永磁同步電機(jī)建模仿真的基礎(chǔ)上,根據(jù)永磁同步電機(jī)控制器的設(shè)計(jì)要求及FPGA的特點(diǎn),提出永磁同步電機(jī)控制器的的設(shè)計(jì)方案。按照FPGA模塊化設(shè)計(jì)思想,將整個(gè)系統(tǒng)進(jìn)行了合理的劃分,分別對(duì)SVPWM、Park變換、SMC、反饋速度測(cè)量等重要模塊的FPGA硬件實(shí)現(xiàn)算法進(jìn)行了深入的研究。各模塊在Modelsim平臺(tái)上完成功能仿真后并下載到Spartan-3E開發(fā)板上完成硬件驗(yàn)證,驗(yàn)證結(jié)果表明:永磁同步電機(jī)在低速和高速時(shí)都能穩(wěn)定運(yùn)行,從而證實(shí)了本設(shè)計(jì)方案的可行性。
上傳時(shí)間: 2013-04-24
上傳用戶:wff
本文論述了嵌入式TCP/IP協(xié)議棧的實(shí)現(xiàn),介紹了TCP/IP協(xié)議棧的原理,以及硬線實(shí)現(xiàn)TCP/IP協(xié)議棧的意義和應(yīng)用。 第一章為緒論,介紹論文研究的目的、內(nèi)容、意義和國(guó)內(nèi)外研究發(fā)展的現(xiàn)狀。 第二章介紹FPGA設(shè)計(jì)的流程和Verilog HDL設(shè)計(jì)語言。著重介紹了FPGA的代碼輸入、編譯、綜合、仿真和下載等等步驟,并且介紹了FPGA設(shè)計(jì)中使用到的EDA軟件。介紹了Verilog HDL語言的起源,以及Verilog HDL語言的優(yōu)缺點(diǎn),并與VHDL語言進(jìn)行了簡(jiǎn)單的比較。 第三章介紹嵌入式系統(tǒng)要實(shí)現(xiàn)的經(jīng)過剪裁的TCP/IP協(xié)議棧的內(nèi)容。著重介紹了要實(shí)現(xiàn)的TCP/IP協(xié)議棧的子協(xié)議,包括TCP協(xié)議、UDP協(xié)議、IP協(xié)議、ARP協(xié)議、ICMP協(xié)議。在介紹這些協(xié)議的時(shí)候,介紹了這些協(xié)議的工作原理,以及這些協(xié)議要用到的報(bào)文的格式。 第四章介紹實(shí)現(xiàn)剪裁的TCP/IP協(xié)議棧的實(shí)現(xiàn),具體介紹的經(jīng)過剪裁的TCP/IP各個(gè)模塊的設(shè)計(jì)工作。這個(gè)部分著重介紹各個(gè)模塊的設(shè)計(jì)方法,實(shí)現(xiàn)各個(gè)模塊的過程。在設(shè)計(jì)完這些模塊后,對(duì)這些模塊的仿真進(jìn)行了仿真。 第五章是全文的總結(jié),概括了作者在這次畢業(yè)設(shè)計(jì)中的主要工作和課題的意義,同時(shí)指出了進(jìn)一步工作的方向和需要解決的問題。
上傳時(shí)間: 2013-07-04
上傳用戶:leesuper
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1