本文簡單介紹了脈沖式激光測距原理、相位式激光測距的原理及相位測量技術。根據課題的要求,給出了電路系統設計方案,選擇了合適測相系統電路參數,分析了調制波的噪聲對系統的影響,計算出能滿足系統精度要求的最低信噪比,對偶然誤差、信號變化幅度大小、零點漂移和電路的相位延遲等原因引起的測量誤差,提出了具體的解決措施,這些措施提高了數字檢相電路的測相精度和穩定性。 根據電路系統設計方案,著重對混頻電路、整形電路和自動數字檢相電路進行了較為深入的分析與討論,其中自動數字檢相電路采用大規模可編程邏輯器件FPGA實現。 文中述敘了利用FPGA實現自動數字檢相的原理及方法步驟,分析了FPGA實現鑒相功能的可靠性。根據設計要求,選擇合適的FPGA邏輯器件和配置器件,使用QuartusⅡ軟件開發可編程邏輯器件及VHDL編程,給出了用QuartusⅡ軟件進行數字檢相測量的系統仿真結果和混頻電路、比較電路、數字檢相電路的實驗結果,對在沒有零角度位置標志信號和沒有允許計數標志信號條件下的實驗結果的精度進行了分析。根據誤差結果分析,提出了下一步研究改進的措施和思路。
上傳時間: 2013-04-24
上傳用戶:yare
本文著重研究了多路數字節目復用器中的對多路預處理TS流復用的原理和基于FPGA的實現方法。首先論述了關于數字電視系統的一些基本概念,介紹了MPEG-2/DVB標準以及數字電視節目專用信息(PSI),并結合多路數字節目復用的基本原理提出了一套基于FPGA的設計方案。通過對復用器輸入部分、復用控制邏輯和PCR校正等一系列模塊的設計及仿真驗證,達到了設計的要求,取得了一定的研究成果。
上傳時間: 2013-06-09
上傳用戶:bugtamor
當前,在系統級互連設計中高速串行I/O技術迅速取代傳統的并行I/O技術正成為業界趨勢。人們已經意識到串行I/O“潮流”是不可避免的,因為在高于1Gbps的速度下,并行I/O方案已經達到了物理極限,不能再提供可靠和經濟的信號同步方法。基于串行I/O的設計帶來許多傳統并行方法所無法提供的優點,包括:更少的器件引腳、更低的電路板空間要求、減少印刷電路板(PCB)層數、PCB布局布線更容易、接頭更小、EMI更少,而且抵抗噪聲的能力也更好。高速串行I/O技術正被越來越廣泛地應用于各種系統設計中,包括PC、消費電子、海量存儲、服務器、通信網絡、工業計算和控制、測試設備等。迄今業界已經發展出了多種串行系統接口標準,如PCI Express、串行RapidIO、InfiniBand、千兆以太網、10G以太網XAUI、串行ATA等等。 Aurora協議是為私有上層協議或標準上層協議提供透明接口的串行互連協議,它允許任何數據分組通過Aurora協議封裝并在芯片間、電路板間甚至機箱間傳輸。Aurora鏈路層協議在物理層采用千兆位串行技術,每物理通道的傳輸波特率可從622Mbps擴展到3.125Gbps。Aurora還可將1至16個物理通道綁定在一起形成一個虛擬鏈路。16個通道綁定而成的虛擬鏈路可提供50Gbps的傳輸波特率和最大40Gbps的全雙工數據傳輸速率。Aurora可優化支持范圍廣泛的應用,如太位級路由器和交換機、遠程接入交換機、HDTV廣播系統、分布式服務器和存儲子系統等需要極高數據傳輸速率的應用。 傳統的標準背板如VME總線和CompactPCI總線都是采用并行總線方式。然而對帶寬需求的不斷增加使新興的高速串行總線背板正在逐漸取代傳統的并行總線背板。現在,高速串行背板速率普遍從622Mbps到3.125Gbps,甚至超過10Gbps。AdvancedTCA(先進電信計算架構)正是在這種背景下作為新一代的標準背板平臺被提出并得到快速的發展。它由PCI工業計算機制造商協會(PICMG)開發,其主要目的是定義一種開放的通信和計算架構,使它們能被方便而迅速地集成,滿足高性能系統業務的要求。ATCA作為標準串行總線結構,支持高速互聯、不同背板拓撲、高信號密度、標準機械與電氣特性、足夠步線長度等特性,滿足當前和未來高系統帶寬的要求。 采用FPGA設計高速串行接口將為設計帶來巨大的靈活性和可擴展能力。Xilinx Virtex-IIPro系列FPGA芯片內置了最多24個RocketIO收發器,提供從622Mbps到3.125Gbps的數據速率并支持所有新興的高速串行I/O接口標準。結合其強大的邏輯處理能力、豐富的IP核心支持和內置PowerPC處理器,為企業從并行連接向串行連接的過渡提供了一個理想的連接平臺。 本文論述了采用Xilinx Virtex-IIPro FPGA設計傳輸速率為2.5Gbps的高速串行背板接口,該背板接口完全符合PICMG3.0規范。本文對串行高速通道技術的發展背景、現狀及應用進行了簡要的介紹和分析,詳細分析了所涉及到的主要技術包括線路編解碼、控制字符、逗點檢測、擾碼、時鐘校正、通道綁定、預加重等。同時對AdvancedTCA規范以及Aurora鏈路層協議進行了分析, 并在此基礎上給出了FPGA的設計方法。最后介紹了基于Virtex-IIPro FPGA的ATCA接口板和MultiBERT設計工具,可在標準ATCA機框內完成單通道速率為2.5Gbps的全網格互聯。
上傳時間: 2013-05-29
上傳用戶:frank1234
本文探索了自主系統CPU設計方法和經驗,同時對80C51產品進行了必要的改進。 文章采用XILINX公司的Virtex-ⅡPro系列FPGA芯片,在相關EDA軟件平臺的支持下進行基于FPGA的8051芯片的設計。在已公開的8051源代碼的基礎上,對其中的程序存儲器、指令存儲器做了較大幅度的修改,增加了定時器、串行收發器的軟件編寫,VerilogHDL語句共6000余行(見附錄光盤)。在設計中筆者特別的注意了源代碼中組合邏輯循環的去除,時序設計中合理確定建立時間和保持時間,保證了工作頻率的提高(工作頻率由12MHz提高到約30MHz),串行收發器的下載實驗驗證了該模塊頻率的提高。對設計高頻CPU提供了有益的借鑒。本文利用Modelsim進行了功能仿真和后仿真,利用Synplify進行了綜合,仿真和綜合結果達到了設計的預期要求,并為下載和組成系統作了準備工作(設計了外圍電路的PCB板圖)。
上傳時間: 2013-06-28
上傳用戶:梧桐
相對于JPEG中二維離散余弦變換(2DDCT)來說,在JPEG2000標準中,二維離散小波變換(2DDWT)是其圖像壓縮系統的核心變換。在很多需要進行實時處理圖像的系統中,如數碼相機、遙感遙測、衛星通信、多媒體通信、便攜式攝像機、移動通信等系統,需要用芯片實現圖像的編解碼壓縮過程。雖然有許多研究工作者對圖像處理的小波變換進行了研究,但大都只偏重算法研究,對算法硬件實現時的復雜性考慮較少,對圖像處理的小波變換硬件實現的研究也較少。 本文針對圖像處理的小波變換算法及其硬件實現進行了研究。對文獻[13]提出的“內嵌延拓提升小波變換”(Combiningthedata-extensionprocedureintothelifting-basedDWTcore)快速算法進行仔細分析,提出一種基于提升方式的5/3小波變換適合硬件實現的算法,在MATLAB中仿真驗證了該算法,證明其是正確的。并設計了該算法的硬件結構,在MATLAT的Simulink中進行仿真,對該結構進行VHDL語言的寄存器傳輸級(RTL)描述與仿真,成功綜合到Altera公司的FPGA器件中進行驗證通過。本算法與傳統的小波變換的邊界處理方法比較:由于將其邊界延拓過程內嵌于小波變換模塊中,使該硬件結構無需額外的邊界延拓過程,減少小波變換過程中對內存的讀寫量,從而達到減少內存使用量,降低功耗,提高硬件利用率和運算速度的特點。本算法與文獻[13]提出的算法相比較:無需增加額外的硬件計算模塊,又具有在硬件實現時不改變原來的提升小波算法的規則性結構的特點。這種小波變換硬件芯片的實現不僅適用于JPEG2000的5/3無損小波變換,當然也可用于其它各種實時圖像壓縮處理硬件系統。
上傳時間: 2013-06-13
上傳用戶:jhksyghr
本文提出一種基于PC104嵌入式工業控制計算機與現場可編程門陣列(FPGA)的PCB測試機的硬件控制系統設計方案。方案中設計高效高壓控制電路,實現測試電壓與測試電流的精確數字控制。選用雙高壓電子開關形式代替高壓模擬電子開關,大幅度提高測試電壓。采用多電源方式在低控制電壓下實現對高壓電子開關的控制。設計高速信號處理電路對測試信號進行處理,從硬件上提高系統測試速度。 本設計中選用Altera公司的現場可編程器(FPGA)EP1K50,利用EDA設計工具Synplify、Modelsim、QuartusⅡ以及Verilog硬件描述語言完成了控制系統的硬件設計及調試,解決了由常規電路難以實現的問題。
上傳時間: 2013-06-04
上傳用戶:lizhen9880
本論文將在對MPEG-4解碼中的幾種關鍵技術的充分理解和算法分析的基礎之上,結合FPGA的靈活性,采用VHDL語言對幾種關鍵技術在應用層面上進行結構設計并仿真驗證。 本文討論了一種高吞吐量流水方式構建的MPEG-4可變長解碼器的設計。在這種解碼器中,我們采用了基于PLA的并行 解碼算法,這種算法能夠實現每個時鐘解碼一個碼字。同時,為了提高解碼的效率,降低操作的延遲,我們在設計中還引入了流水線操作方式、碼表分割等技術,這些技術有利于并行操作的實現。 本論文的設計充分利用IDCT算法對稱性,用高度的并行結構來加速處理,采用一維IDCT單元復用的方式來實現二維IDCT運算,并提出一種基于加法操作的結構來取代乘法操作,實現了一種高效二維逆DCT變換處理器。
上傳時間: 2013-06-02
上傳用戶:MATAIYES
本文結合中國科技大學大規模集成電路實驗室和中國科學院上海技術物理研究所合作的星載紅外相機項目,為了解決紅外相機上的不同波段的紅外探測元陣列存在的非均勻性問題,對紅外焦平面探測元陣列存在的非均勻性問題展開了深入的分析和研究。 主要研究和分析了兩類算法的基本原理,重點研究和實現了定標校正算法,通過對積分球定標數據進行深入的分析,將探測元分成線性探測元和非線性探測元,對線性探測元采用兩點校正法,對非線性探測元采用多點分段校正算法,在利用FPGA硬件實現非均勻校正時,分析設計了基于乘法運算和加法運算的FPGA實現,在基于乘加器運算的FPGA實現中。設計出了乘法和加法整體運算的乘加器,內部采用流水線wallace樹壓縮結構,大大加快乘法和加法的速度。
上傳時間: 2013-04-24
上傳用戶:weddps
頻率合成技術廣泛應用于通信、航空航天、儀器儀表等領域。目前,常用的頻率合成技術有直接式頻率合成,鎖相頻率合成和直接數字頻率合成(DDS)。本次設計是利用FPGA完成一個DDS系統并利用該系統實現模擬信號的數字化調頻。 DDS是把一系列數字量形式的信號通過D/A轉換形成模擬量形式的信號的合成技術。主要是利用高速存儲器作查尋表,然后通過高速D/A轉換器產生已經用數字形式存入的正弦波(或其他任意波形)。一個典型的DDS系統應包括:相位累加器,可在時鐘的控制下完成相位的累加;相位碼—幅度碼轉換電路,一般由ROM實現;DA轉換電路,將數字形式的幅度碼轉換成模擬信號。DDS系統可以很方便地獲得頻率分辨率很精細且相位連續的信號,也可以通過改變相位字改變信號的相位,因此也廣泛用于數字調頻和調相。本次數字化調頻的基本思想是利用AD轉換電路將模擬信號轉換成數字信號,同時用該數字信號與一個固定的頻率字累加,形成一個受模擬信號幅度控制的頻率字,從而獲得一個頻率受模擬信號的幅度控制的正弦波,即實現了調頻。該DDS數字化調頻方案的硬件系統是以FPGA為核心實現的。使用Altera公司的ACEX1K系列FPGA,整個系統由VHDL語言編程,開發軟件為MAX+PLUSⅡ。經過實際測試,該系統在頻率較低時與理論值完全符合,但在高頻時,受器件速度的限制,波形有較大的失真。
上傳時間: 2013-06-14
上傳用戶:ljt101007
隨著移動終端、多媒體、Internet網絡、通信,圖像掃描技術的發展,以及人們對圖象分辨率,質量要求的不斷提高,用軟件壓縮難以達到實時性要求,而且會帶來因傳輸大量原始圖象數據帶來的帶寬要求,因此采用硬件實現圖象壓縮已成為一種必然趨勢。而熵編碼單元作為圖像變換,量化后的處理環節,是圖像壓縮中必不可少的部分。研究熵編解碼器的硬件實現,具有廣闊的應用背景。本文以星載視頻圖像壓縮的硬件實現項目為背景,對熵編碼器和解碼器的硬件實現進行探討,給出了并行熵編碼和解碼器的實現方案。熵編解碼器中的難點是huffman編解碼器的實現。在設計并行huffman編碼方案時通過改善Huffman編碼器中變長碼流向定長碼流轉換時的控制邏輯,避免了因數據處理不及時造成數據丟失的可能性,從而保證了編碼的正確性。而在實現并行的huffman解碼器時,解碼算法充分利用了規則化碼書帶來的碼字的單調性,及在特定長度碼字集內碼字變化的連續性,將并行解碼由模式匹配轉換為算術運算,提高了存儲器的利用率、系統的解碼效率和速度。在實現并行huffman編碼的基礎上,結合針對DC子帶的預測編碼,針對直流子帶的游程編碼,能夠對圖像壓縮系統中經過DWT變換,量化,掃描后的數據進行正確的編碼。同時,在并行huffman解碼基礎上的熵解碼器也可以解碼出正確的數據提供給解碼系統的后續反量化模塊,進一步處理。在本文介紹的設計方案中,按照自頂向下的設計方法,對星載圖像壓縮系統中的熵編解碼器進行分析,進而進行邏輯功能分割及模塊劃分,然后分別實現各子模塊,并最終完成整個系統。在設計過程中,用高級硬件描述語言verilogHDL進行RTL級描述。利用了Altera公司的QuartusII開發平臺進行設計輸入、編譯、仿真,同時還采用modelsim仿真工具和symplicity的綜合工具,驗證了設計的正確性。通過系統波形仿真和下板驗證熵編碼器最高頻率可以達到127M,在62.5M的情況下工作正常。而熵解碼器也可正常工作在62.5M,吞吐量可達到2500Mbps,也能滿足性能要求。仿真驗證的結果表明:設計能夠滿足性能要求,并具有一定的使用價值。
上傳時間: 2013-05-19
上傳用戶:吳之波123