本文提出了一種基于FPGA的硬件防火墻的實現方案,采用了FPGA來實現千兆線速的防火墻。傳統的基于X86等通用CPU的防火墻無法支撐快速增長的網絡速度,無法實現線速過濾和轉發。本文在采用FPGA可編程器件+通用CPU模式下,快速處理網絡數據。網絡數據在建立連接跟蹤后,直接由FPGA實現的快速處理板直接轉發,實現了網絡數據的線速處理,通用CPU在操作系統支持下,完成網絡數據的連接跟蹤的創建、維護,對網絡規則表的維護等工作。FPGA硬件板和CPU各司所長,實現快速轉發的目的。 本文設計了基于FPGA的硬件板的硬件規格,提出了硬件連接跟蹤表的存儲模式,以及規則表的存儲模式和定義等; 防火墻系統軟件采用NetBSD操作系統,完成了硬件板的NetBSD的驅動;在軟件系統完成了新建連接的建立、下發、老化等工作;在連接跟蹤上完成了規則的建立、刪除、修改等工作。 本文完成了防火墻的實現。實現了基于連接跟蹤的包過濾、地址轉換(NAT),設計了連接跟蹤的關鍵數據結構,包過濾的關鍵數據結構等,重用了NetBSD操作系統的路由。本文針對地址轉換應用程序的穿透問題,新增了部分實現。 在DoS攻擊是一種比較常見的攻擊網絡手段,本文采用了軟硬件結合的方法,不僅在軟件部分做了完善,也在硬件部分采取了相應的措施,測試數據表明,對常見的Syn洪水攻擊效果明顯。 在實踐過程中,我們發現了NetBSD操作系統內核的軟件缺陷,做了修正,使之更完善。 經過測試分析,本方案不僅明顯的優于X86方案,和基于NP方案、基于ASIC方案比較,具有靈活、可配置、易升級的優點。
上傳時間: 2013-06-21
上傳用戶:zxh1986123
對于H.264視頻編碼系統,雖然單純用軟件也可以實現整個編碼過程,但是由于整個編碼系統的算法復雜度很高,里面又有大量的數學運算,使得軟件的計算能力差、速度慢,容易造成總線擁擠,所以單純地依靠軟件無法實現視頻編碼的要求。為了縮短整個編碼的時間,提高編碼系統的工作效率,有必要將軟件中耗費時間和資源較多的模塊用硬件來實現。本文正是基于上述的想法,通過使用FPGA豐富的內部資源來實現H.264的編碼。本系統流程是首先使用視頻解碼芯片SAA7113將從攝像頭傳輸過來的PAL制式數據轉換為ITU656格式的數字視頻數據,然后由FPGA讀取并進行預測、變換和編碼,最后將編碼生成的碼流通過USB接口發送到PC端進行解碼和顯示。
上傳時間: 2013-06-30
上傳用戶:hehuaiyu
基于TMS320F2812的SVPWM控制
上傳時間: 2013-04-24
上傳用戶:fyerd
對弓網故障的檢測是當今列車檢測的一項重要任務。原始故障視頻圖像具有極大的數據量,使實時存儲和傳輸故障視頻圖像極其困難。由于視頻的數據量相當大,需要采用先進的視頻編解碼協議進行處理,進而實現檢測現場的實時監控。 @@ H.264/AVC(Advanced Video Coding)作為MPEG-4的第10部分,因其具有超高的壓縮效率、極好的網絡親和性,而被廣泛研究與應用。H.264/AVC采用了先進的算法,主要有整數變換、1/4像素精度插值、多模式幀間預測、抗塊效應濾波器和熵編碼等。 @@ 本文使用硬件描述語言Verilog,以紅色颶風 II開發板作為硬件平臺,在開發工具QUARTUSII 6.0和MODELSIM_SE 6.1B環境中完成軟核的設計與仿真驗證。以Altera公司的CycloneII FPGA(Field Programmable Gate Array)EP2C35F484C8作為核心芯片,實現視頻圖像采集、存儲、顯示以及實現H.264/AVC部分算法的基本系統。 @@ FPGA以其設計靈活、高速、具有豐富的布線資源等特性,逐漸成為許多系統設計的首選,尤其是與Verilog和VHDL等語言的結合,大大變革了電子系統的設計方法,加速了系統的設計進程。 @@ 本文首先分析了FPGA的特點、設計流程、verilog語言等,然后對靜態圖像及視頻圖像的編解碼進行詳細的分析,比如H.264/AVC中的變換、量化、熵編碼等:并以JM10.2為平臺,運用H.264/AVC算法對視頻序列進行大量的實驗,對不同分辨率、量化步長、視頻序列進行編解碼以及對結果進行分析。接著以紅色颶風II開發板為平臺,進行視頻圖像的采集存儲、顯示分析,其中詳細分析了SAA7113的配置、CCD信號的A/D轉換、I2C總線、視頻的數字化ITU-R BT.601標準介紹及視頻同步信號的獲取、基于SDRAM的視頻幀存儲、VGA顯示控制設計;最后運用verilog語言實現H.264/AVC部分算法,并進行功能仿真,得到預計的效果。 @@ 本文實現了整個視頻信號的采集存儲、顯示流程,詳細研究了H.264/AVC算法,并運用硬件語言實現了部分算法,對視頻編解碼芯片的設計具有一定的參考價值。 @@關鍵詞:FPGA;H.264/AVC;視頻;verilog;編解碼
上傳時間: 2013-04-24
上傳用戶:啦啦啦啦啦啦啦
隨著社會的發展,人們對電力需求特別是電能質量的要求越來越高。但由于非線性負荷大量使用,卻帶來了嚴重的電力諧波污染,給電力系統安全、穩定、高效運行帶來嚴重影響,給供用電設備造成危害。如何最大限度的減少諧波造成的危害,是目前電力系統領域極為關注的問題。諧波檢測是諧波研究中重要分支,是解決其它相關諧波問題的基礎。因此,對諧波的檢測和研究,具有重要的理論意義和實用價值。 目前使用的電力系統諧波檢測裝置,大多基于微處理器設計。微處理器是作為整個系統的核心,它的性能高低直接決定了產品性能的好壞。而這種微處理器為主體構成的應用系統,存在效率低、資源利用率低、程序指針易受干擾等缺點。由于微電子技術的發展,特別是專用集成電路ASIC(ApplicationSpecificIntegratedCircuit)設計技術的發展,使得設計電力系統諧波檢測專用的集成電路成為可能,同時為諧波檢測裝置的硬件設計提供了一個新的發展途徑。本文目標就是設計電力系統諧波檢測專用集成電路,從而可以實現對電力系統諧波的高精度檢測。采用專用集成電路進行諧波檢測裝置的硬件設計,具有體積小,速度快,可靠性高等優點,由于應用范圍廣,需求量大,電力系統諧波檢測專用集成電路具有很好的應用前景。 本文首先介紹了國內外現行諧波檢測標準,調研了電力系統諧波檢測的發展趨勢;隨后根據裝置的功能需求,特別是依據其中諧波檢測國標參數的測量算法,為系統選定了基于FPGA的SOPC設計方案。 本文分析了電力系統諧波檢測專用集成電路的功能模型,對專用集成電路進行了模塊劃分。定義了各模塊的功能,并研究了模塊間的連接方式,給出了諧波檢測專用集成電路的并行結構。設計了基于FPGA的諧波檢測專用集成電路設計和驗證的硬件平臺。配合專用集成電路的電子設計自動化(EDA)工具構建了智能監控單元專用集成電路的開發環境。 在進行FPGA具體設計時,根據待實現功能的不同特點,分為用戶邏輯區域和Nios處理器模塊兩個部分。用戶邏輯區域控制A/D轉換器進行模擬信號的采樣,并對采樣得到的數字量進行諧波分析等運算。然后將結果存入片內的雙口RAM中,等待Nios處理器的訪問。Nios處理器對數據處理模塊的結果進一步處理,得到其各自對應的最終值,并將結果通過串行通信接口發送給上位機。 最后,對設計實體進行了整體的編譯、綜合與優化工作,并通過邏輯分析儀對設計進行了驗證。在實驗室條件下,對監測指標的運算結果進行了實驗測量,實驗結果表明該監測裝置滿足了電力系統諧波檢測的總體要求。
上傳時間: 2013-04-24
上傳用戶:yw14205
近紅外光譜法是血液成分無創檢測方法中的熱點,也是取得成果最多的方法之一。但是,個體差異和測量條件是影響近紅外光譜血液成分無創檢測的一個較突出的問題。而動態光譜法就是針對這個問題而提出的一種全新的近紅外無創血液成分濃度檢測方法。它從原理上消除了個體差異和測量條件等對光譜檢測的影響,為基于近紅外光譜法的血液成分無創檢測方法進入臨床應用去除了一個較為關鍵的障礙。因此,本文根據動態光譜檢測原理設計了基于FPGA的動態光譜數據采集系統。 在分析了動態光譜數據采集系統的性能要求后,采用DALSA的高性能線陣CCD IL-C6-2048C作為光電轉換器件;根據CCD輸出數據的高速度和信號微弱及含有噪聲等特點,選用了高速、高精度、并帶有相關雙采樣芯片的圖像處理芯片AD9826作為模數轉換器件;以FPGA及其內嵌的NIOSⅡ處理器作為核心控制器,并用LabVIEW對采集得到的數據進行顯示。 在FPGA中,利用Verilog HDL語言編寫了CCD和AD9826的控制時序;利用兩塊雙口RAM組成乒乓操作單元,實現高速數據的緩存,避免利用NiosⅡ處理器直接讀取時的頻繁中斷。將NIOSⅡ處理器系統嵌入到FPGA中,實現整個系統的管理。NiOSⅡ處理器利用中斷方式讀取緩存單元中的數據、經對數變換后傳遞給計算機。其中緩存數據的讀取及對數變換均采用自定義組件的方式將硬件單元添加到NIOSⅡ系統中,編程時直接調用。NIOSⅡ系統通過串口將處理后的數據傳遞給LabVIEW, LabVIEW對數據簡單處理后顯示,以實時觀察采樣數據是否正確。 最后對系統進行了實驗測試,實驗結果表明,系統能夠很好的采集并顯示數據,能夠初步完成光信號的檢測。
上傳時間: 2013-04-24
上傳用戶:luyanping
溫濕度是影響糧食儲藏的重要參數,兩者之間是相互關聯的,溫濕度控制不好必然引起糧食發熱和霉變,且極易產生連鎖反應,從而造成難以挽回的損失。溫濕度的控制直接影響到糧食存儲系統的性能。岡此,糧食溫濕度測控技術在農業上的應用是十分重要的。本文研究基于FPGA的糧倉溫濕度監制系統。 設計了基于FPGA的糧倉溫濕度監控系統,該系統主要由溫濕度傳感器、控制電路、單片機和上位機構成。單片機主要完成溫度數據的采集和上位機的通訊;控制電路基于FPGA進行設計,主要負責采集濕度信息,計算溫濕度偏差及其變化率,通過調用模糊控制算法對溫濕度進行模糊控制,單片機通過RS485總線和上位機進行串口通信,使上位機能夠實時記錄,顯示溫濕度變化值和控制過程曲線。該系統實現了糧倉內溫濕度的實時監測,使管理人員可以實時掌控糧倉內的溫濕度情況。 采用FPGA設計控制電路簡化了系統的組成和外圍數字電路,易于系統擴展和升級,內部集成了信號處理、控制、檢測電路,減少了系統的體積,縮短了開發周期,大大增強了系統的可靠性;配合功率驅動、電源等外圍電路,完成信號采集、處理和控制等功能,節省了開發成本,使糧倉溫濕度控制系統更加集成化。這也恰恰更加符合當今電子產品高精度,集成化的要求。 系統采用直接輸出數字量的DS1820溫度傳感器和濕度傳感器HS1101并將HS1101與555定時器組成振蕩電路,其輸出為頻率脈沖信號,與濕度值成線性關系,該頻率脈沖信號可直接送入FPGA進行計數,這樣溫濕度傳感器輸出的信號都沒有經過放大、A/D轉換,進一步減少了測量誤差。控制電路采用了VHDL硬件描述語言進行編寫。本裝置已作出實樣,通過了調試,已達到預期效果。
上傳時間: 2013-06-16
上傳用戶:731140412
高速、高精度已經成為伺服驅動系統的發展趨勢,而位置檢測環節是決定伺服系統高速、高精度性能的關鍵環節之一。光電編碼器作為伺服驅動系統中常用的檢測裝置,根據結構和原理的不同分為增量式和絕對式。本文從原理上對增量式光電編碼器和絕對式光電編碼器做了深入的分析,通過對比它們的特性,得出了絕對式光電編碼器更適合高速、高精度伺服驅動系統的結論。 絕對式光電編碼器精度高、位數多的特點決定其通信方式只能采取串行傳輸方式,且由相應的通信協議控制信息的傳輸。本文首先針對編碼器主要生產廠商日本多摩川公司的絕對式光電編碼器,深入研究了通信協議相關的硬件電路、數據幀格式、時序等。隨后介紹了新興的電子器件FPGA及其開發語言硬件描述語言Verilog HDL,并對基于FPGA的絕對式編碼器通信接口電路做了可行性的分析。在此基礎上,采用自頂向下的設計方法,將整個接口電路劃分成發送模塊、接收模塊、序列控制模塊等多個模塊,各個模塊采用Verilog語言進行描述設計編碼器接口電路。最終的設計在相關硬件電路上實現。最后,通過在TMS320F2812伺服控制平臺上編寫的硬件驅動程序驗證了整個設計的各項功能,達到了設計的要求。
上傳時間: 2013-07-11
上傳用戶:snowkiss2014
本文對基于FPGA的對象存儲控制器原型的硬件設計進行了研究。主要內容如下: ⑴研究了對象存儲控制器的硬件設計,使其高效完成對象級接口的智能化管理和復雜存儲協議的解析,對對象存儲系統整體性能提升有重要意義。基于SoPC(片上可編程系統)技術,在FPGA(現場可編程門陣列)上實現的對象存儲控制器,具有功能配置靈活,調試方便,成本較低等優點。 ⑵采用Cyclone II器件實現的對象存儲控制器的網絡接口,包含處理器模塊、內存模塊、Flash模塊等核心組成部分,提供千兆以太網的網絡接口和PCI(周邊元件擴展接口)總線的主機接口,還具備電源模塊、時鐘模塊等以保證系統正常運行。在設計實現PCB(印制電路板)時,從疊層設計、布局、布線、阻抗匹配等多方面解決高達100MHz的全局時鐘帶來的信號完整性問題,并基于IBIS模型進行了信號完整性分析及仿真。針對各功能模塊提出了相應的調試策略,并完成了部分模塊的調試工作。 ⑶提出了基于Virtex-4的對象存儲控制器系統設計方案,Virtex-4內嵌PowerPC高性能處理器,可更好地完成對象存儲設備相關的控制和管理工作。實現了豐富的接口設計,包括千兆以太網、光纖通道、SATA(串行高級技術附件)等網絡存儲接口以及較PCI性能更優異的PCI-X(并連的PCI總線)主機接口;提供多種FPGA配置方式。使用Cadence公司的Capture CIS工具完成了該系統硬件的原理圖繪制,通過了設計規則檢查,生成了網表用作下一步設計工作的交付文件。
上傳時間: 2013-04-24
上傳用戶:lijinchuan
國家863項目“飛行控制計算機系統FC通信卡研制”的任務是研究設計符合CPCI總線標準的FC通信卡。本課題是這個項目的進一步引伸,用于設計SCI串行通信接口,以實現環上多計算機系統間的高速串行通信。 本文以此項目為背景,對基于FPGA的SCI串行通信接口進行研究與實現。論文先概述SCI協議,接著對SCI串行通信接口的兩個模塊:SCI節點模型模塊和CPCI總線接口模塊的功能和實現進行了詳細的論述。 SCI節模型包含Aurora收發模塊、中斷進程、旁路FIFO、接受和發送存儲器、地址解碼、MUX。在SCI節點模型的實現上,利用FPGA內嵌的RocketIO高速串行收發器實現主機之間的高速串行通信,并利用Aurora IP核實現了Aurora鏈路層協議;設計一個同步FIFO實現旁路FIFO;利用FPGA上的塊RAM實現發送和接收存儲器;中斷進程、地址解碼和多路復合分別在控制邏輯中實現。 CPCI總線接口包括PCI核、PCI核的配置模塊以及用戶邏輯三個部分。本課題中,采用FPGA+PCI軟核的方法來實現CPCI總線接口。PCI核作為PCI總線與用戶邏輯之間的橋梁:PCI核的配置模塊負責對PCI核進行配置,得到用戶需要的PCI核;用戶邏輯模塊負責實現整個通信接口具體的內部邏輯功能;并引入中斷機制來提高SCI通信接口與主機之間數據交換的速率。 設計選用硬件描述語言VerilogHDL和VHDL,在開發工具Xilinx ISE7.1中完成整個系統的設計、綜合、布局布線,利用Modelsim進行功能及時序仿真,使用DriverWorks為SCI串行通信接口編寫WinXP下的驅動程序,用VC++6.0編寫相應的測試應用程序。最后,將FPGA設計下載到FC通信卡中運行,并利用ISE內嵌的ChipScope Pro虛擬邏輯分析儀對設計進行驗證,運行結果正常。 文章最后分析傳輸性能上的原因,指出工作中的不足之處和需要進一步完善的地方。
上傳時間: 2013-04-24
上傳用戶:竺羽翎2222