高速公路隧道屬于特殊路段,隧道洞內(nèi)外環(huán)境差別非常大,需要在隧道內(nèi)設(shè)置電光照明,以消除司機(jī)的“暗適應(yīng)"與“明適應(yīng)’’視覺(jué)問(wèn)題,保證隧道行車(chē)安全。而當(dāng)前的大部分高速公路隧道照明控制系統(tǒng)簡(jiǎn)單,照明光源舒適度不高,未根據(jù)洞外環(huán)境亮度,綜合車(chē)速車(chē)流量及洞內(nèi)煙霧濃度等因素,實(shí)時(shí)調(diào)節(jié)隧道洞內(nèi)照明亮度,存在盲目加大隧道照明的亮度的問(wèn)題,給行車(chē)安全帶來(lái)隱患,造成能源浪費(fèi),不符合設(shè)計(jì)規(guī)范和國(guó)家節(jié)能的政策要求。 本文介紹了當(dāng)前隧道照明的發(fā)展及照明燈具智能控制的研究狀況,針對(duì)當(dāng)前隧道照明的控制系統(tǒng)存在的問(wèn)題,給出了基于ZigBee的隧道照明無(wú)線(xiàn)控制系統(tǒng)的 架構(gòu);分析比較了當(dāng)前各種隧道照明光源的特點(diǎn),針對(duì)當(dāng)前普遍采用的高壓鈉燈照明和新興的LED燈照明做了詳細(xì)的經(jīng)濟(jì)效益對(duì)比,根據(jù)系統(tǒng)使用壽命周期內(nèi)的性?xún)r(jià)比,選擇大功率LED作為隧道照明燈具;在分析ZigBee協(xié)議及組網(wǎng)流程的基礎(chǔ)上,設(shè)計(jì)了基于ZigBee技術(shù)的簇樹(shù)型隧道照明無(wú)線(xiàn)測(cè)控網(wǎng)絡(luò),系統(tǒng)采用CC2430無(wú)線(xiàn)模塊作為網(wǎng)絡(luò)節(jié)點(diǎn)的硬件解決方案,對(duì)網(wǎng)絡(luò)中的協(xié)調(diào)器、路由器及終端節(jié)點(diǎn)的組網(wǎng)及其數(shù)據(jù)處理流程進(jìn)行了詳細(xì)設(shè)計(jì);設(shè)計(jì)了利用ZigBee技術(shù)作為控制命令和數(shù)據(jù)傳輸?shù)目烧{(diào)光LED燈具,滿(mǎn)足所提出的控制系統(tǒng)對(duì)燈具的要求:針對(duì)隧道照明控制參數(shù)及燈具光效難以建立精確數(shù)學(xué)模型的特點(diǎn),系統(tǒng)采用基于專(zhuān)家經(jīng)驗(yàn)的隧道照明的模糊控制算法,設(shè)計(jì)了隧道照明控制程序,并嵌入到利用WinCC設(shè)計(jì)的隧道照明的控制系統(tǒng)中。論文最后對(duì)所設(shè)計(jì)的系統(tǒng)進(jìn)行了測(cè)試,驗(yàn)證了系統(tǒng)的可行性。
標(biāo)簽: ZigBee 隧道照明 無(wú)線(xiàn)控制
上傳時(shí)間: 2013-04-24
上傳用戶(hù):gundamwzc
在團(tuán)簇與激光相互作用的研究中和在團(tuán)簇與加速器離子束的碰撞研究中,需要對(duì)加速器束流或者激光束進(jìn)行脈沖化與時(shí)序同步,同時(shí)用于測(cè)量作用產(chǎn)物的探測(cè)系統(tǒng)如飛行時(shí)間譜儀(TOF)等要求各加速電場(chǎng)的控制具有一定的時(shí)序匹配。在整個(gè)實(shí)驗(yàn)中,需要用到符合要求的多路脈沖時(shí)序信號(hào)控制器,而且要求各脈沖序列的周期、占空比、重復(fù)頻率等方便可調(diào)。為此,本論文基于FPGA設(shè)計(jì)完成了一款多路脈沖時(shí)序控制電路。 本文基于Altera公司的Cyclone系列FPGA芯片EPlC3T100C8,設(shè)計(jì)出了一款可以同時(shí)輸出8路脈沖序列、各脈沖序列之間具有可調(diào)高精度延遲、可調(diào)脈沖寬度及占空比等。論文討論了FPGA芯片結(jié)構(gòu)及開(kāi)發(fā)流程,著重討論了較高頻率脈沖電路的可編程實(shí)現(xiàn)方法,以及如何利用VHDL語(yǔ)言實(shí)現(xiàn)硬件電路軟件化設(shè)計(jì)的技巧與方法,給出了整個(gè)系統(tǒng)設(shè)計(jì)的原理與實(shí)現(xiàn)。討論了高精密電源的PWM技術(shù)原理及實(shí)現(xiàn),并由此設(shè)計(jì)了FPGA所需電源系統(tǒng)。給出了配置電路設(shè)計(jì)、數(shù)據(jù)通信及接口電路的實(shí)現(xiàn)。開(kāi)發(fā)了上層控制軟件來(lái)控制各路脈沖時(shí)序及屬性。 該電路工作頻率200MHz,輸出脈沖最小寬度可達(dá)到10ns,最大寬度可達(dá)到us甚至ms量級(jí)。可以同時(shí)提供l路同步脈沖和7路脈沖,并且7路脈沖相對(duì)于同步脈沖的延遲時(shí)間可調(diào),調(diào)節(jié)步長(zhǎng)為5ns。
上傳時(shí)間: 2013-06-15
上傳用戶(hù):ZJX5201314
利用單片機(jī)及溫度傳感器測(cè)量溫度,并將測(cè)量溫度值和設(shè)定溫度值(50度)比較,根據(jù)比較結(jié)果控制斷續(xù)加熱器(用發(fā)光二極管模擬)的通斷占空比,一個(gè)工作周期3S左右。
上傳時(shí)間: 2013-06-21
上傳用戶(hù):xiaoyunyun
protel99se精彩教程。 很多網(wǎng)友渴望自己設(shè)計(jì)電路原理圖(SCH)、電路板(PCB),同時(shí)希望從原始SCH到PCB自動(dòng)布線(xiàn)、再到成品PCB電路板的設(shè)計(jì)周期可以縮短到1天以?xún)?nèi)!是不是不可能呢?當(dāng)然不是,因?yàn)楝F(xiàn)在的EDA軟件已經(jīng)達(dá)到了幾乎無(wú)所不能的地步!由于電子很著重實(shí)踐,可以說(shuō),不曾親自設(shè)計(jì)過(guò)PCB電路板的電子工程師,幾乎是不可想象的。 很多電子愛(ài)好者都有過(guò)學(xué)習(xí)PROTEL的經(jīng)歷,本人也是一樣,摸索的學(xué)習(xí),耐心的體會(huì),充分的體會(huì)什么是成功之母。不希望大家把不必要的時(shí)間浪費(fèi)在學(xué)習(xí)PROTEL的初期操作上,在這里做這個(gè)教程是為了給渴望快速了解和操作PROTEL的初學(xué)者們一個(gè)走捷徑的機(jī)會(huì),教程大家都可以看到,可以省走很多不必要的彎路及快速建立信心,網(wǎng)絡(luò)的魅力之一就在于學(xué)習(xí)的效率很高。由于本人的水平很有限,所以教程做的比較淺,就是教大家:1.畫(huà)畫(huà)簡(jiǎn)單的原理圖(SCH)2.學(xué)會(huì)創(chuàng)建SCH零件 2.把原理圖轉(zhuǎn)換成電路板(PCB) 3.對(duì)PCB進(jìn)行自動(dòng)布線(xiàn) 4.學(xué)會(huì)創(chuàng)建PCB零件庫(kù) 5.學(xué)會(huì)一些常用的PCB高級(jí)技巧。鑒于此,如果您這方面已經(jīng)是水平很高的專(zhuān)業(yè)人士,無(wú)需看此教程。 同時(shí)也愿這些簡(jiǎn)單的圖片教程可以使大家在今后的電子電路設(shè)計(jì)之路上所向披靡。
上傳時(shí)間: 2013-07-12
上傳用戶(hù):2404
離散余弦變換(DCT)及其反變換(IDCT)在圖像編解碼方面應(yīng)用十分廣泛,至今已被JPEG、MPEG-1、MPEG-2、MPEG-4和H.26x等國(guó)際標(biāo)準(zhǔn)所采用。由于其計(jì)算量較大,軟件實(shí)現(xiàn)往往難以滿(mǎn)足實(shí)時(shí)處理的要求,因而在很多實(shí)際應(yīng)用中需要采用硬件設(shè)計(jì)的DCT/IDCT處理電路來(lái)滿(mǎn)足我們對(duì)處理速度的要求。本文所研究的內(nèi)容就是針對(duì)圖像處理應(yīng)用的8×8二維DCT/IDCT處理核的硬件實(shí)現(xiàn)。 本文首先介紹了DCT和IDCT在圖像處理中的作用和原理,詳細(xì)說(shuō)明了DCT變換實(shí)現(xiàn)圖像壓縮的過(guò)程,并與其它變換比較說(shuō)明了用DCT變換實(shí)現(xiàn)圖像壓縮的優(yōu)勢(shì)。接著,分析研究了DCT的各種快速算法,總結(jié)了前人對(duì)DCT快速算法及其實(shí)現(xiàn)所做的研究。本文給出了兩種性能、資源上有一定差異的二維DCT/IDCT的FPGA設(shè)計(jì)方案。兩種方案均利用DCT的行列分離特性,采用流水線(xiàn)設(shè)計(jì)技術(shù),將二維DCT/IDCT實(shí)現(xiàn)轉(zhuǎn)化為兩個(gè)一維DCT/IDCT實(shí)現(xiàn)。在一維DCT/IDCT設(shè)計(jì)中,根據(jù)圖像處理的特點(diǎn)對(duì)Loeffler算法的數(shù)據(jù)流進(jìn)行了優(yōu)化,通過(guò)合理安排時(shí)鐘周期數(shù)和簡(jiǎn)化各周期內(nèi)的操作,大大縮短了關(guān)鍵路徑的執(zhí)行時(shí)間,從而提高了流水線(xiàn)的執(zhí)行速度。最后,對(duì)所設(shè)計(jì)的DCT/IDCT處理核進(jìn)行了綜合和時(shí)序仿真。 結(jié)果表明,當(dāng)使用Altera公司的MERCURY系列FPGA器件時(shí),本文設(shè)計(jì)的方案一能夠在116M時(shí)鐘頻率下正確完成8×8的二維DCT或IDCT的邏輯運(yùn)算,消耗2827個(gè)邏輯單元;方案二能夠在74M時(shí)鐘頻率下正常工作,消耗1629個(gè)邏輯單元。
上傳時(shí)間: 2013-07-14
上傳用戶(hù):3291976780
隨著ASIC設(shè)計(jì)規(guī)模的增長(zhǎng),功能驗(yàn)證已成為整個(gè)開(kāi)發(fā)周期的瓶頸。傳統(tǒng)的基于軟件模擬和硬件仿真的邏輯驗(yàn)證方法已難以滿(mǎn)足應(yīng)用的要求,基于FPGA組的原型驗(yàn)證方法能有效縮短系統(tǒng)的開(kāi)發(fā)周期,可提供更快更全面的驗(yàn)證。由于FPGA芯片容量的增加跟不上ASIC設(shè)計(jì)規(guī)模的增長(zhǎng),單芯片已無(wú)法容納整個(gè)設(shè)計(jì),所以常常需要對(duì)設(shè)計(jì)進(jìn)行邏輯分割,將子邏輯塊映射到FPGA陣列中。 本文對(duì)邏輯驗(yàn)證系統(tǒng)的可配置互連結(jié)構(gòu)和ASIC邏輯分割算法進(jìn)行了深入的研究,提出了FPGA陣列的非對(duì)稱(chēng)可配置互連結(jié)構(gòu)。與現(xiàn)有的對(duì)稱(chēng)互連結(jié)構(gòu)相比,該結(jié)構(gòu)能提供更多的互連通道,可實(shí)現(xiàn)對(duì)I/O數(shù)量、電平類(lèi)型和互連路徑的靈活配置。 本文對(duì)邏輯分割算法進(jìn)行了較深入的研究。針對(duì)現(xiàn)有的兩類(lèi)分割算法存在的不足,提出并實(shí)現(xiàn)了基于設(shè)計(jì)模塊的邏輯分割算法,該算法有三個(gè)重要特征:1)基于設(shè)計(jì)代碼;2)以模塊作為邏輯分割的最小單位;3)使用模塊資源信息指導(dǎo)邏輯分割過(guò)程,避免了設(shè)計(jì)分割過(guò)程的盲目性,簡(jiǎn)化了邏輯分割過(guò)程。 本文還對(duì)并行邏輯分割方法進(jìn)行了研究,提出了兩種基于不同任務(wù)分配策略的并行分割算法,并對(duì)其進(jìn)行了模擬和性能分析;驗(yàn)證了采用并行方案對(duì)ASIC邏輯進(jìn)行分割和映射的可行性。 最后基于改進(jìn)的芯片互連結(jié)構(gòu),使用原型系統(tǒng)驗(yàn)證方法對(duì)某一大規(guī)模ASIC設(shè)計(jì)進(jìn)行了邏輯分割和功能驗(yàn)證。實(shí)驗(yàn)結(jié)果表明,使用改進(jìn)后的FPGA陣列互連結(jié)構(gòu)可以更方便和快捷地實(shí)現(xiàn)ASIC設(shè)計(jì)的分割和驗(yàn)證,不但能顯著提高芯片間互連路徑的利用率,而且能給邏輯分割乃至整個(gè)驗(yàn)證過(guò)程提供更好的支持,滿(mǎn)足現(xiàn)在和將來(lái)大規(guī)模ASIC邏輯驗(yàn)證的需求。
標(biāo)簽: FPGA ASIC 邏輯 驗(yàn)證技術(shù)
上傳時(shí)間: 2013-06-12
上傳用戶(hù):極客
碼分多址(CDMA)通信方式以其特有的抗干擾性、多址能力和多徑分集能力,而成為第三代移動(dòng)通信系統(tǒng)的主要技術(shù)。其中Rake接收技術(shù)是CDMA系統(tǒng)中的一項(xiàng)關(guān)鍵技術(shù)。隨著通信技術(shù)的迅猛發(fā)展,Rake接收技術(shù)以其有效的抗衰落的能力一直是人們研究的熱點(diǎn)。人們不斷的對(duì)傳統(tǒng)的Rake接收機(jī)進(jìn)行改進(jìn),獲得性能更佳的Rake接收機(jī)。FPGA技術(shù)的快速發(fā)展,也很大的改變了傳統(tǒng)的數(shù)字系統(tǒng)設(shè)計(jì)的方法。FPGA以其龐大的規(guī)模、開(kāi)發(fā)過(guò)程投資小、開(kāi)發(fā)周期短、保密性好等優(yōu)點(diǎn),為人們對(duì)Rake接收機(jī)的研究提供了方便。 本文旨在設(shè)計(jì)一種功耗低、硬件實(shí)現(xiàn)相對(duì)簡(jiǎn)單的Rake接收機(jī)結(jié)構(gòu)。首先,本文介紹了Rake接收的相關(guān)理論,對(duì)Rake技術(shù)的抗衰落性能進(jìn)行了分析,然后,對(duì)各種Rake接收機(jī)進(jìn)行了比較,最終提出了一種靈活配置的Rake接收機(jī)的改進(jìn)方案,該方案采用了不同的緩沖器結(jié)構(gòu),能夠更多的節(jié)約硬件資源,整個(gè)接收機(jī)的功耗更低。最后利用VerilogHDL語(yǔ)言對(duì)其中的主要模塊進(jìn)行編程設(shè)計(jì),并在Xilinx公司的集成開(kāi)發(fā)工具ISE6.1中進(jìn)行仿真,仿真平臺(tái)為Spartan-3系列中的XC3S1000芯片。仿真結(jié)果表明了所設(shè)計(jì)模塊的正確性。所設(shè)計(jì)模塊具有良好的可移植性,能夠被相關(guān)的系統(tǒng)調(diào)用,本文所做工作有一定的實(shí)際意義。
上傳時(shí)間: 2013-06-21
上傳用戶(hù):gaorxchina
采用自動(dòng)增益控制(AGC)技術(shù)實(shí)現(xiàn)的寬頻帶放大器在雷達(dá)系統(tǒng)及其他相關(guān)電子領(lǐng)域有著廣泛的應(yīng)用。 本文詳細(xì)討論了基于FPGA和可編程增益放大器(PGA)實(shí)現(xiàn)的自動(dòng)增益控制寬帶視頻放大器的設(shè)計(jì)及實(shí)現(xiàn)方法。首先給出了自動(dòng)增益控制寬帶放大器取樣反饋、數(shù)字控制部分的多種實(shí)現(xiàn)方案,并根據(jù)實(shí)際應(yīng)用情況及性能指標(biāo)要求進(jìn)行了方案論證。接著,分別介紹了模擬通道部分、數(shù)字取樣模塊、FPGA邏輯控制模塊及數(shù)模轉(zhuǎn)換模塊,包括它們的芯片選擇、實(shí)現(xiàn)方法和注意事項(xiàng)等。最后,對(duì)FPGA邏輯控制模塊進(jìn)行了功能分解,并以XilinxISE和Modelsim為開(kāi)發(fā)平臺(tái)完成了其子模塊的程序設(shè)計(jì)及相關(guān)階段的仿真。 本文實(shí)現(xiàn)的電路板可對(duì)帶寬達(dá)40M的信號(hào)進(jìn)行平穩(wěn)的放大并輸出較平坦的信號(hào)波形。同時(shí),該電路板具有自動(dòng)增益及固定增益選擇能力。當(dāng)選擇自動(dòng)增益方式時(shí),增益的改變通過(guò)增益同步脈沖觸發(fā),觸發(fā)脈沖可由系統(tǒng)內(nèi)部周期產(chǎn)生或外部提供。
標(biāo)簽: FPGA 自動(dòng)增益控制 放大器設(shè)計(jì) 視頻
上傳時(shí)間: 2013-06-05
上傳用戶(hù):acon
在衛(wèi)星遙感設(shè)備中,隨著遙感技術(shù)的發(fā)展和對(duì)傳輸式觀(guān)測(cè)衛(wèi)星遙感圖像質(zhì)量要求的不斷提高,航天遙感圖像的分辨率和采樣率也越來(lái)越高,由此引起高分辨率遙感圖像數(shù)據(jù)存儲(chǔ)量和傳輸數(shù)據(jù)量的急劇增長(zhǎng),然而衛(wèi)星信道帶寬有限。為了盡量保持高分辨率遙感圖像所具有的信息,必須解決輸入數(shù)據(jù)碼率和傳輸信道帶寬之間的矛盾。所以星載高分辨率遙感圖像數(shù)據(jù)的高保真、實(shí)時(shí)、大壓縮比壓縮技術(shù)就成了解決這一矛盾的關(guān)鍵技術(shù)。FPGA器件為實(shí)現(xiàn)數(shù)據(jù)壓縮提供了一種壓縮算法的硬件實(shí)現(xiàn)的一個(gè)理想的平臺(tái)。FPGA器件集成度高,體積小,通過(guò)用戶(hù)編程實(shí)現(xiàn)專(zhuān)門(mén)應(yīng)用的功能。它允許電路設(shè)計(jì)者利用基于計(jì)算機(jī)的開(kāi)發(fā)平臺(tái),經(jīng)過(guò)設(shè)計(jì)輸入,仿真,測(cè)試和校驗(yàn),直到達(dá)到預(yù)期的結(jié)果,減少了開(kāi)發(fā)周期。小波變換能夠適應(yīng)現(xiàn)代圖像壓縮所需要的如多分辨率、多層質(zhì)量控制等要求,在較大壓縮比下,小波圖像壓縮質(zhì)量明顯好于DCT變換,因此小波變換成為新一代壓縮標(biāo)準(zhǔn)JPEG2000的核心算法。同時(shí),小波變換的提升算法結(jié)構(gòu)簡(jiǎn)單,能夠?qū)崿F(xiàn)快速算法,有利于硬件實(shí)現(xiàn),因此提升小波變換對(duì)于采用FPGA或ASIC來(lái)實(shí)現(xiàn)圖像變換來(lái)說(shuō)是很好的選擇。本文針對(duì)衛(wèi)星遙感圖像的數(shù)據(jù)流,主要研究可以對(duì)衛(wèi)星圖像進(jìn)行實(shí)時(shí)二維小波變換的方案。針對(duì)提升小波變換的VLSI結(jié)構(gòu)和FPGA設(shè)計(jì)中的關(guān)鍵技術(shù),從邊界延拓、濾波器結(jié)構(gòu)、整數(shù)小波、定點(diǎn)運(yùn)算、原位運(yùn)算等方面進(jìn)行了研究和討論,并且完成了針對(duì)衛(wèi)星遙感圖像的分塊二維9/7提升小波變換的FPGA實(shí)現(xiàn)。采用VerIlog語(yǔ)言對(duì)設(shè)計(jì)進(jìn)行了仿真驗(yàn)證,并將仿真結(jié)果同matlab仿真結(jié)果進(jìn)行了比較,比較結(jié)果表明該方案能實(shí)現(xiàn)對(duì)衛(wèi)星遙感圖像數(shù)據(jù)流的二維提升小波變換的功能。同時(shí)QuartusII綜合結(jié)果也表明,系統(tǒng)時(shí)鐘能夠工作在很高的頻率,可以滿(mǎn)足高速實(shí)時(shí)對(duì)衛(wèi)星圖像的小波變換處理。
標(biāo)簽: FPGA 提升機(jī) 二維 離散小波
上傳時(shí)間: 2013-06-15
上傳用戶(hù):00.00
激光測(cè)距技術(shù)被廣泛應(yīng)用于現(xiàn)代工業(yè)測(cè)量、航空與大地的測(cè)量、國(guó)防及通信等諸多領(lǐng)域。本文從已獲得廣泛應(yīng)用的脈沖激光測(cè)距技術(shù)入手,重點(diǎn)分析了近年提出的自觸發(fā)脈沖激光測(cè)距技術(shù)(STPLR)特別是其中的雙自觸發(fā)脈沖激光測(cè)距技術(shù)(BSTPLR),通過(guò)分析發(fā)現(xiàn)其核心部件之一就是用于測(cè)量激光脈沖飛行時(shí)間(周期)的高精度高速計(jì)數(shù)器,而目前一般的方式是采用昂貴的進(jìn)口高速計(jì)數(shù)器或?qū)S眉呻娐?ASIC)來(lái)完成,這使得激光測(cè)距儀在研發(fā)、系統(tǒng)的改造升級(jí)和自主知識(shí)產(chǎn)權(quán)保護(hù)等諸多方面受到制約,同時(shí)在其整體性能上特別是在集成化、小型化和高可靠性方面帶來(lái)阻礙。為此,本文研究了采用現(xiàn)場(chǎng)可編程門(mén)陣列(FPGA)來(lái)實(shí)現(xiàn)脈沖激光測(cè)距中的高精度高速計(jì)數(shù)及其他相關(guān)功能,基本解決了以上存在的問(wèn)題。 論文通過(guò)對(duì)雙自觸發(fā)脈沖激光測(cè)距的主要技術(shù)要求和技術(shù)指標(biāo)進(jìn)行分析,對(duì)其中的信號(hào)處理單元采用了FPGA+單片機(jī)的設(shè)計(jì)形式。由FPGA主控芯片(EPF10K20TC144-4)作為周期測(cè)量模塊,在整個(gè)測(cè)距系統(tǒng)中是信號(hào)處理的核心部件,借助其用戶(hù)可編程特性及很高的內(nèi)部時(shí)鐘頻率,設(shè)計(jì)了專(zhuān)用于BSTPLR的高速高精度計(jì)數(shù)芯片,負(fù)責(zé)對(duì)測(cè)距信號(hào)產(chǎn)生電路中的時(shí)刻鑒別電路輸出信號(hào)進(jìn)行計(jì)數(shù)。數(shù)據(jù)處理模塊則主要由單片機(jī)(AT89C51)來(lái)實(shí)現(xiàn)。系統(tǒng)可以通過(guò)鍵盤(pán)預(yù)置門(mén)控信號(hào)的寬度以均衡測(cè)量的精度和速度,測(cè)量結(jié)果采用7位LED數(shù)碼管顯示。本設(shè)計(jì)在近距離(大尺寸)范圍內(nèi)實(shí)驗(yàn)測(cè)試時(shí)基本滿(mǎn)足設(shè)計(jì)要求。
標(biāo)簽: FPGA 自觸發(fā)脈沖 激光測(cè)距 關(guān)鍵技術(shù)
上傳時(shí)間: 2013-06-02
上傳用戶(hù):
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1