非接觸電能傳輸技術是一門新興的能量傳輸技術,它集合了電力電子能量傳輸技術、磁場耦合技術以及現代控制理論。由于這種電能傳輸方式沒有接觸摩擦,可減少對設備的損傷,不會產生易引燃引爆的火花,解決了給移動設備特別是在惡劣環境下,工作設備的供電問題。在交通運輸、航空航天、機器人、醫療器械、照明、便攜式電子產品、礦井和水下應用等場合有著廣泛的應用前景。本文對非接觸電能傳輸技術進行了理論和實驗研究。主要研究內容如下: ⑴介紹了非接觸電能傳輸技術的國內外研究現狀,發展前景,基本原理與所涉及到的關鍵技術。 ⑵通過建立漏感模型,對采用各種補償方式時,補償電容的選擇進行了分析與研究,并對不同補償方式時,負載對系統傳輸效率的影響進行了分析。 ⑶介紹了PWM調制硬開關技術、軟開關技術,比較分析了應用于無接觸電能傳輸系統主變換器的幾種逆變器拓撲結構,詳細分析了移相全橋變換器的工作原理,在此基礎上,對變換器進行改進,提出了基于移相全橋控制的諧振變換器,并對變換器的工作原理進行了詳細分析。 ⑷對系統原副邊主電路的主要參數進行了分析與設計,對松耦合變壓器的結構選擇、主要參數進行了分析與設計。 ⑸分別用通用DSP芯片TMS320F2812和專用控制芯片UC3875對系統的控制電路進行了設計。 ⑹對系統進行了仿真研究,在仿真成功的基礎上,采用UC3875控制方案制作了實驗樣機,進行了實驗研究。
上傳時間: 2013-07-19
上傳用戶:libenshu01
無刷直流電機以體積小、重量輕、效率高、調速性能好、無換向火花及無勵磁損耗等諸多優點被大量應用于家電、交通、醫療器械、數控機床及機器人等領域,現代工業的快速發展對無刷直流電機控制系統的性能要求也越來越高。可以預見,隨著永磁材料和電力電子器件價格進一步的降低,無刷直流電機驅動理論的研究不斷深入,無刷直流電機的應用前景將更加廣泛。 本文通過閱讀大量文獻資料,介紹了無刷直流電機的發展現狀、研究動態及工作原理等。在控制策略上,采用了基于智能控制思想的模糊控制,其特點是不依賴于對象模型,利用制定的控制規則進行了模糊推理從而獲得合適的控制量。運用Matlab/Simulink對控制系統進行了建模和仿真,其中速度環采用模糊PI調節,電流環采用傳統的PI調節,為后面的實驗提供了理論分析的基礎。 結合無刷直流電機的結構,利用電機內部的霍爾元件檢測轉子位置。根據模糊控制器的設計方法,給出了模糊控制查詢表。采用TI公司的數字信號處理器TMS320F2812作為主控芯片,在硬件上設計了整流電路、逆變電路、驅動電路、調理及保護電路等;在DSP軟件開發環境CCS下,采用C語言和匯編語言進行了混合編程,實現了轉子位置信號的讀取、PWM波的產生、AD采樣、速度模糊PI調節及電流調節等功能。 通過對整個控制系統的軟硬件聯合調試,進行了相關實驗。相對傳統的控制系統,采用模糊PI控制的系統具有響應速度快、超調量小、穩定性好等優點。實驗結果表明了無刷直流電機模糊控制系統設計的正確性。最后對整個設計進行了總結,對后續的工作給出了自己的見解。
上傳時間: 2013-04-24
上傳用戶:R50974
三相逆變器作為交流供電電源的主要部分,廣泛地應用于電動車、電力設備、產業設備、交通車輛等領域。逆變器的并聯控制技術以其廣泛的應用前景也得到越來越深入地研究。人們對逆變電源的要求越來越高,高性能、高可靠性的大功率逆變器就是當今逆變電源的發展趨勢之一。提高逆變電源容量主要有兩個途徑,設計大功率的逆變器和采用逆變器并聯技術實現電源模塊化。 為此,本文以兩臺400kVA組合式三相逆變器為對象,采用全數字化控制方式,主要研究了大功率三相逆變器的波形控制技術和并聯控制技術。本文圍繞大功率組合式三相逆變器,對其主電路結構、系統的數學模型、波形控制技術以及并聯系統模型、并聯控制方案進行了較為詳細的分析和研究。分析了適用于大功率的組合式三相逆變器結構,并給出了400kVA組合式三相逆變器的主電路設計。建立和分析了組合式三相逆變器在ABC、αβ、dq 坐標系下的數學模型。針對大功率組合式三相逆變器,采用在dq 坐標系下的三相電壓閉環統一控制方案。為了使大功率三相逆變器得到較好的輸出電壓波形質量,采用PID 瞬時值電壓反饋控制和重復控制并聯結合的控制方案。分析了PID 控制器和重復控制器的原理,并針對400kVA 三相逆變器的系統性能,給出了相應數字PID 控制器和重復控制器的設計。并利用Matlab 建立了系統的仿真模型,給出了理論研究結果。提出了有效提高系統動態性能的兩種方法:加負載電流前饋和動態過程中強制改變改變調制比。介紹了大功率三相逆變器的短路限流保護技術,提出了采用瞬時值限流電路和單獨的軟件限流環相結合的方案,保證大功率三相逆變器在短路時自動限流保護。對兩臺大功率三相逆變器組成的并聯系統的結構、環流特性及逆變器的輸出功率進行了分析。詳細分析了輸出阻抗特性不同時,逆變器環流和輸出功率分配的差異,得出了輸出阻抗對環流和功率影響的一般規律。針對大功率三相逆變器并聯系統,采用基于功率誤差的分散邏輯控制方案。分析了基于功率誤差的分散邏輯控制原理,逆變器輸出功率的檢測和母線信號綜合的脈寬調制原理。根據400kVA 三相逆變器并聯系統的輸出阻抗特性,采用了無功調節輸出電壓幅值和同步鎖相實現相位同步的并聯控制策略。 本文最后在兩臺400kVA組合式三相逆變器樣機上得到了實驗驗證。實驗結果進一步驗證了大功率三相逆變器的波形控制和并聯控制策略有效可行性。
上傳時間: 2013-07-03
上傳用戶:coolloo
光伏發電是集開發可再生能源、改善生態環境于一體的重大課題,有巨大的經濟、社會效益和學術研究價值。 本文首先介紹了3kW光伏并網逆變器系統的組成和結構。3kW光伏并網逆變器采用兩級式結構,主電路由前級Boost變換器和后級的單相逆變橋組成。控制部分以DSP(DSP56F803)為核心,實現了光伏陣列最大功率點的跟蹤控制,以及產生與電網壓同頻同相的正弦電流,實現并網的功能。本文重點對逆變器系統的最大功率點跟蹤(MPPT)控制進行研究。 針對基于外特性建立的光伏陣列模型雖然簡單、參數易解,但精度低的問題,本文建立了基于物理特性的光伏陣列模型,并考慮光照強度、環境溫度對光伏陣列的影響,模型參數與實際參數嚴格對應。將幾種最大功率點跟蹤算法應用于所建立的光伏陣列模型使用MATLAB進行仿真,分析仿真結果,比較各種算法的優缺點,總結出每種算法所適用的環境,并給出了最大功率點跟蹤控制在并網逆變器系統的實現策略。 設計了適用于額定功率為100W的光伏陣列最大功率點跟蹤的Boost電路,分別給出了利用PIC單片機16F873實現擾動觀察法和增量電導法的程序流程圖,實現了這兩種算法控制下光伏陣列的最大功率點跟蹤,并分析了兩種算法的跟蹤性能。
上傳時間: 2013-04-24
上傳用戶:fudong911
隨著電子技術的快速發展,各種電子設備對時間精度的要求日益提升。在衛星發射、導航、導彈控制、潛艇定位、各種觀測、通信等方面,時鐘同步技術都發揮著極其重要的作用,得到了廣泛的推廣。對于分布式采集系統來說,中心主站需要對來自于不同采集設備的采集數據進行匯總和分析,得到各個采集點對同一事件的采集時間差異,通過對該時間差異的分析,最終做出對事件的準確判斷。如果分布式采集系統中的各個采集設備不具有統一的時鐘基準,那么得到的各個采集時間差異就不能反映出實際情況,中心主站也無法準確地對事件進行分析和判斷,甚至得出錯誤的結論。因此,時鐘同步是分布式采集系統正常運作的必要前提。 目前國內外時鐘同步領域常用的技術有GPS授時技術,鎖相環技術和IRIG-B 碼等。GPS授時技術雖然精度高,抗干擾性強,但是由于需要專用的GPS接收機,若單純使用GPS 授時技術做時鐘同步,就需要在每個采集點安裝接收機,成本較高。鎖相環是一種讓輸出信號在頻率和相位上與輸入參考信號同步的技術,輸出信號的時鐘準確度和穩定性直接依賴于輸入參考信號。IRIG-B 碼是一種信息量大,適合傳輸的時間碼,但是由于其時間精度低,不適合應用于高精度時鐘同步的系統。基于上述分析,本文結合這三種常用技術,提出了一種基于FPGA的分布式采集系統時鐘同步控制技術。該技術既保留了GPS 授時的高精確度和高穩定性,又具備IRIG-B時間碼易傳輸和低成本的特性,為分布式采集系統中的時鐘同步提供了一種新的解決方案。 本文中的設計采用了Ublox公司的精確授時GPS芯片LEA-5T,通過對GPS芯片串行時間信息解碼,獲得準確的UTC時間,并實現了分布式采集系統中各個采集設備的精確時間打碼。為了能夠使整個分布式采集系統具有統一的高精度數據采集時鐘,本論文采用了數模混合的鎖相環技術,將GPS 接收芯片輸出的高精度秒信號作為參考基準,生成了與秒信號高精度同步的100MHZ 高頻時鐘。本文在FPGA 中完成了IRIG-B 碼的編碼部分,將B 碼的準時標志與GPS 秒信號同步,提高了IRIG-B 碼的時間精度。在分布式采集系統中,IRIG-B時間碼能直接通過串口或光纖將各個采集點時間與UTC時間統一,節約了各點布設GPS 接收機的高昂成本。最后,通過PC104總線對時鐘同步控制卡進行了數據讀取和測試,通過實驗結果的分析,提出了改進方案。實驗表明,改進后的時鐘同步控制方案具有很高的時鐘同步精度,對時鐘同步技術有著重大的推進意義!
上傳時間: 2013-08-05
上傳用戶:lz4v4
激光打標是指利用高能量密度的激光束在物件表面作永久性標刻。激光打標以其“打標速度快、性能穩定、打標質量好”等優勢,獲得了日益廣泛的應用。傳統的激光打標系統一般是基于ISA總線或PCI總線的,運動控制卡必須插在計算機的PCI插槽內,且不支持熱捅拔,影響了控制卡的穩定性;以單片機為主控制器的激光打標控制卡雖然成本低、運行可靠,但由于其運算速度慢、存儲容量有限,限制了它的應用范圍。 運動控制卡是激光打標系統的核心組成部分。本文設計了一種新型的基于USB總線,以FPGA為主控單元的振鏡掃描式激光打標控制卡,它利用了USB總線高速、穩定、易用和FPGA資源豐富、處理能力強、易擴展等優點,將PC機強大的信息處理能力與運動控制卡的運動控制能力相結合,具有信息處理能力強、開放程度高、使用方便的特點。 本文首先介紹了激光打標的原理,激光打標技術的發展現狀以及激光打標系統的組成結構。在對USB總線技術作了簡要介紹后,詳細討論了激光打標控制卡的硬件電路設計,包括USB接口電路,FPGA主控單元電路,D/A單元電路,存儲器電路,I/O接口電路等。接著對USB接口單元的固件程序和FPGA中USB接口功能模塊、D/A寫控制功能模塊和SRAM讀寫控制功能模塊的程序做了詳細設計,通過軟硬件調試,控制卡實現了USB通信,輸出兩路模擬信號,SRAM數據讀寫,數字量輸入輸出等功能。
上傳時間: 2013-04-24
上傳用戶:prczsf
LED顯示屏是LED點陣模塊或者像素單元組成的平面顯示屏幕。自從誕生以來,以其亮度高、視角廣、壽命長、性價比高的特點,在交通、廣告、新聞發布、體育比賽、電子景觀等領域得到了廣泛應用。 LED顯示屏控制器作為控制LED屏顯示圖像、數據的關鍵,是整個LED視頻顯示系統的核心。本文研究的是對全彩色同步LED屏的控制,控制LED屏同步顯示在上位機顯示系統中某固定位置處的圖像。根據已有的LED顯示屏及其驅動器的特點,提出了一種可行的方案并進行了設計。系統主要分為兩個部分:視頻信號的獲取,視頻信號的處理。 經過分析比較,決定從顯卡的DVI接口獲得視頻源,視頻源經過DVI解碼芯片TFP401A的解碼后,可以獲得圖像的數字信息,這些信息包括紅、綠、藍三基色的數據以及行同步、場同步、使能等控制信號。這些信號將在視頻信號處理模塊中被使用。 信號處理模塊在接收視頻信號源后,對數據進行處理,最后輸出數據給驅動電路。在信號處理模塊中,采用了可編程邏輯器件FPGA來完成。可編程邏輯器件具有高集成度、高速度、高可靠性、在線可編程(ISP)等特點,所以特別適合于本設計。利用FPGA的可編程性,在FPGA內部劃分了各個小模塊,各小模塊中通過少量的信號進行聯系,這樣就將比較大的系統轉化成許多小的系統,使得設計更加簡單,容易驗證。本文分析了驅動電路所需要的數據的特點,全彩色灰度級的實現方式,決定把系統劃分為視頻源截取、RGB格式轉化、位平面分離、讀SRAM地址發生器、寫SRAM地址發生器、讀寫SRAM選擇控制器、灰度實現等模塊。 最后利用示波器和SignalTap II邏輯分析儀等工具,對系統進行了聯合調試。改進了時序、優化了布局布線,使得系統性能得到了良好的改善。 在分析了所需要的資源的基礎上,課題決定采用Altera的Cyclone EP1C12 FPGA設計視頻信號處理模塊,在Quartus II和modelsim平臺下,用Verilog HDL語言開發。
上傳時間: 2013-05-19
上傳用戶:玉簫飛燕
LED顯示屏作為一項高新科技產品正引起人們的高度重視,它以其動態范圍廣,亮度高,壽命長,工作性能穩定而日漸成為顯示媒體中的佼佼者,現已廣泛應用于廣告、證券、交通、信息發布等各方面,且隨著全彩屏顯示技術的日益完善,LED顯示屏有著廣闊的市場前景。 本文主要研究的對象為全彩色LED同步顯示屏控制系統,提出了一個系統實現方案,整個系統分三部分組成:DVI解碼電路、發送系統以及接收系統。DVI解碼模塊用于從顯卡的DVI口獲取視頻源數據,經過T.D.M.S.解碼恢復出可供LED屏顯示的紅、綠、藍共24位像素數據和一些控制信號。發送系統用于將收到的數據流進行緩存,經處理后發送至以太網芯片進行以太網傳輸。接收系統接收以太網上傳來的視頻數據流,經過位分離操作后存入SRAM進行緩存,再串行輸入至LED顯示屏進行掃描顯示。然后,從多方面論述了該方案的可行性,仔細推導了LED顯示屏各技術參數之間的聯系及約束關系。 本課題采用可編程邏輯器件來完成系統功能,可編程邏輯器件具有高集成度、高速度、在線可編程等特點,不僅可以滿足高速圖像數據處理對速度的要求,而且增加了設計的靈活性,不需修改電路硬件設計,縮短了設計周期,還可以進行在線升級。
上傳時間: 2013-04-24
上傳用戶:西伯利亞
論文提出了一種基于FPSLIC的下位機控制器系統設計,并且在嵌入式硬件和軟件的聯合調度之下予以實現,并將該系統應用于微小型無人直升機MUAV控制上。 微小型無人直升機體積小、重量輕、隱蔽性好、機動性強、易實現懸停和超低空飛行,因此在軍用和民用領域都有廣泛的應用前景。微小型無人直升機在空中執行任務時需要實時獲得在空間的姿態和高度位置信息,然后通過調制舵機狀態來調整飛行器的空中姿態,糾正飛行路線,而MUAV的飛控系統需要具有負荷輕,功能強大,實時性強以及低功耗的特點,對嵌入式處理器要求較高,所以針對MUAV的控制采用上下位機聯合控制的結構。并且由于目前現有的下位機控制器滿足不了MUAV控制發展的需求,所以本文中利用FPS[JC優越的性能,實現了一種新的下位機控制器的設計,具有體積小、重量輕、價格低、功耗低、實時性強、可靠性高、擴展性好等優點的同時,完成了基于PWM的舵機的控制和基于Kalman濾波的多傳感器的數據融合,以及上下位機之間的通訊等功能,具有較強的使用和應用價值。 論文首先介紹了MUAV飛行控制的結構,以及下位機實現功能的模塊劃分。然后是對MUAV控制系統相關理論的介紹,包括舵機控制的原理和方法以及多傳感器數據融合的理論。 其次論文介紹了基于FPSLIC的下位機控制器系統的軟硬件設計。在硬件設計上,給出了硬件總體設計方案,并對各個功能模塊進行了詳細論述,軟件部分在給出了主要的框架和功能劃分后,主要介紹了利用FPSLIC的FPGA部分實現PWM控制和測量的模塊以及AVR部分對多傳感器信息進行Kalman濾波融合的實現。 最后在實驗室的汽油無人直升機的測試平臺上進行了舵機控制和高度測試實驗,取得了滿意的實驗結果。
上傳時間: 2013-04-24
上傳用戶:fredguo
如今電力電子電路的控制旨在實現高頻開關的計算機控制,并向著更高頻率、更低損耗和全數字化的方向發展。現場可編程門陣列器件(Field Programmable Gate Arrays)是近年來嶄露頭角的一類新型集成電路,它具有簡潔、經濟、高速度、低功耗等優勢,又具有全集成化、適用性強,便于開發和維護(升級)等顯著優點。與單片機和DSP相比,FPGA的頻率更高、速度更快,這些特點順應了電力電子電路的日趨高頻化和復雜化發展的需要。因此,在越來越多的領域中FPGA得到了日益廣泛的發展和應用。 本文提出了一種采用現場可編程門陣列(FPGA)器件實現數字化變頻調速控制系統的設計方案。該系統能產生三相六路正弦脈寬調制(SPWM)波形;調制頻率范圍為0~4KHZ,分7級控制;16位的速度控制分辨率;載波頻率分8級控制,最高可達24KHZ;系統接口兼容Intel系列和Motorola系列單片機;該系統控制簡單、精確,易修改,可現場編程;同時具有脈沖延時小、最小脈沖刪除、過壓和過流保護功能等特點,可應用于PWM變頻調速系統的全數字化控制。文中對方案的實現進行了詳細的論述,主要包括系統設計的理論分析,系統結構設計及在FPGA硬件上的實現,最終驗證了該控制系統的可行性和有效性。 數字化設計是本系統的特點,系統最終生成的三相SPWM脈沖是基于三相正弦調制波和三角載波比較得到的。設計時,充分結合FPGA器件的結構特點,利用一種改進結構的數字控制振蕩器(NCO)來產生正弦波樣本,在一定程度上解決了傳統NCO產生正弦波的精度和頻率相互制約的問題;把分時復用數字通信原理結合到系統的設計中,設計出分時運算電路,使得系統在同步時鐘下,生成三相正弦調制波而不影響系統的速度,同三角載波邏輯比較后,最終得到三相SPWM脈沖序列。
上傳時間: 2013-07-05
上傳用戶:duoshen1989