擴頻通信技術是信息時代的三大高技術通信傳輸方式之一,與常規的通信技術相比。具有低截獲率、強抗噪聲、抗干擾性,具有信息隱蔽和多址通信等特點,目前已從軍事領域向民用領域迅速發展。在民用化之后,它被迅速推廣到各種公用和專用通信網絡之中,如衛星通信、數據傳輸、定位、測距等系統中。 擴頻通信技術中,最常見的是直接序列擴頻通信(DSSS)系統,然而目前專用擴頻芯片大部分功能都已固化。缺少產品開發的靈活性。其次,目前用FPGA與DSP相結合實現的直接序列擴頻的收發系統比較多,系統復雜且成本高。另外,現代擴頻通信系統在接收和發送端需要完成許多快速復雜的信號處理,這對電路的可靠性和處理速度提出了更高的要求。因此,設計一個全部用FPGA技術實現的擴頻通信收、發系統具有較強的實際應用價值。 根據FPGA的高速并行處理能力和全硬件實現的特點,采用直接序列擴頻技術,借助QuartusⅡ6.0及Protel99se工具,完成了系統的軟件仿真和硬件電路設計。實驗結果表明,比用傳統的FPGA與DSP相結合實現方式,提高了處理速度,減少了硬件延時。同時采用了流水線技術,提高了系統并行處理的能力。并且系統功能可以通過程序來修改和升級,與專用擴頻芯片相比,具有很大的靈活性。所有模塊都集成在一個芯片中,提高了系統的穩定性和可靠性。
上傳時間: 2013-05-18
上傳用戶:天天天天
現場可編程門陣列器件(FPGA)是一種新型集成電路,可以將眾多的控制功能模塊集成為一體,具有集成度高、實用性強、高性價比、便于開發等優點,因而具有廣泛的應用前景。單相全橋逆變器是逆變器的一種基本拓撲結構,對它的研究可以為三相逆變器研究提供參考,因此對單相全橋逆變器的分析有著重要的意義。 本文研制了一種基于FPGA的SPWM數字控制器,并將其應用于單相逆變器進行了試驗研究。主要研究內容包括:SPWM數字控制系統軟件設計以及逆變器硬件電路設計,并對試驗中發現的問題進行了深入分析,提出了相應的解決方案和減小波形失真的措施。在硬件設計方面,首先對雙極性/單極性正弦脈寬調制技術進行分析,選用適合高頻設計的雙極性調制。其次,詳細分析死區效應,采用通過判斷輸出電壓電流之間的相位角預測橋臂電流極性方向,超前補償波形失真的方案。最后,采用電壓反饋實時檢測技術,對PWM進行動態調整。在控制系統軟件設計方面,采用FPGA自上而下的設計方法,對其控制系統進行了功能劃分,完成了DDS標準正弦波發生器、三角波發生器、SPWM產生器以及加入死區補償的PWM發生器、電流極性判斷(零點判斷模塊和延時模塊)和反饋等模塊的設計。針對仿真和實驗中的毛刺現象,分析其產生機理,給出常用的解決措施,改進了系統性能。
上傳時間: 2013-07-06
上傳用戶:66666
激光測距是一種非接觸式的測量技術,已被廣泛使用于遙感、精密測量、工程建設、安全監測以及智能控制等領域。早期的激光測距系統在激光接收機中通過分立的單元電路處理激光發、收信號以測量光脈沖往返時間,使得開發成本高、電路復雜,調試困難,精度以及可靠性相對較差,體積和重量也較大,且沒有與其他儀器相匹配的標準接口,上述缺陷阻礙了激光測距系統的普及應用。 本文針對激光測距信號處理系統設計了一套全數字集成方案,除激光發射、接收電路以外,將信號發生、信號采集、綜合控制、數據處理和數據傳輸五個部分集成為一塊專用集成電路。這樣就不再需要DA轉換和AD轉換電路和濾波處理等模塊,可以直接對信號進行數字信號處理。與分立的單元電路構成的激光測距信號處琿相比,可以大大降低激光測距系統的成本,縮短激光測距的研制周期。并且由于專用集成電路帶有標準的RS232接口,可以直接與通信模塊連接,構成激光遙測實時監控系統,通過LED實時顯示測距結果。這樣使得激光測距系統只需由激光器LD、接收PD和一片集成電路組成即可,提出了橋梁的位移監測技術方法,并設計出一種針對橋梁的位移監測的具有既便攜、有效又經濟實用的監測樣機。 本文基于xil inx公司提供的開發環境(ise8.2)、和Virtex2P系列XC2VP30的開發版來設計的,提出一種基于方波的利用DCM(數字時鐘管理器)檢相的相位式測距方法;采用三把側尺頻率分別是30MHz、3MHz、lOkHz,對應的測尺長度分別為5米、50米和15000米,對應的精度分別為±0.02米、±0.5米和±5米。設計了一套激光測距全數字信號處理系統。為了證明本系統的準確性,另外設計了一套利用延時的方法來模擬激光光路,經過測試,證明利用DCM檢相的相位式測距方法對于橋梁的位移監測是可行的,測量精度和測量結果也滿足設計方案要求。
上傳時間: 2013-06-12
上傳用戶:fanboynet
本文以Turbo碼編譯碼器的FPGA實現為目標,對Turbo碼的編譯碼算法和用硬件語言將其實現進行了深入的研究。 首先,在理論上對Turbo碼的編譯碼原理進行了介紹,確定了Max-log-MAF算法的譯碼算法,結合CCSDS標準,在實現編碼器時,針對標準中給定的幀長、碼率與交織算法,以及偽隨機序列模塊與幀同步模塊,提出了相應解決方案;而在相應的譯碼器設計中,采用了FPGA設計中“自上而下”的設計方法,權衡硬件實現復雜度與處理時延等因素,優先考慮面積因素,提高元件的重復利用率和降低電路復雜度,來實現Turbo碼的Max-log-MAP算法譯碼。把整個系統分割成不同的功能模塊,分別闡述了實現過程。 然后,基于Verilog HDL 設計出12位固點數據的Turbo編譯碼器以及仿真驗證平臺,與用Matlab語言設計的相同指標的浮點數據譯碼器進行性能比較,得到該設計的功能驗證。 最后,研究了Tuxbo碼譯碼器幾項最新技術,如滑動窗譯碼,歸一化處理,停止迭代技術結合流水線電路設計,將改進后的譯碼器與先前設計的譯碼器分別在ISE開發環境中針對目標器件xilinx Virtex-Ⅱ500進行電路綜合,證實了這些改進技術能有效地提高譯碼器的吞吐量,減少譯碼時延和存儲器面積從而降低功耗。
上傳時間: 2013-04-24
上傳用戶:haohaoxuexi
隨著全控型變流技術的不斷發展和應用領域的不斷拓寬,具有高功率因數的PWM整流器在工業領域中逐漸得到普遍重視。在目前的PWM調制方法中,自然采樣SPWM具有控制靈活、輸出脈沖波形好、諧波含量低等優點,是一種性能優良的調制方法。傳統的基于DSP的SPWM實現方法受DSP本身串行程序流工作模式的限制,是很難實時完成自然采樣SPWM的計算的,這在一些特殊的應用領域限制了PWM整流器性能的提高。為此,論文提出了一種基于FPGA的自然采樣SPWM實現方法,并在三相電流型整流器樣機上進行了實驗驗證。由于FPGA具有豐富的可編程邏輯資源和I/O口,并且可以采用并行工作方式,因此控制系統具有更快的處理速度、更小的控制延時和更好的實時性,有利于PWM整流器性能的提高。仿真和實驗研究都表明本文的設計是正確有效的。
上傳時間: 2013-06-16
上傳用戶:黑漆漆
可靠通信要求消息從信源到信宿盡量無誤傳輸,這就要求通信系統具有很好的糾錯能力,如使用差錯控制編碼。自仙農定理提出以來,先后有許多糾錯編碼被相繼提出,例如漢明碼,BCH碼和RS碼等,而C。Berrou等人于1993年提出的Turbo碼以其優異的糾錯性能成為通信界的一個里程碑。 然而,Turbo碼迭代譯碼復雜度大,導致其譯碼延時大,故而在工程中的應用受到一定限制,而并行Turbo譯碼可以很好地解決上述問題。本論文的主要工作是通過硬件實現一種基于幀分裂和歸零處理的新型并行Turbo編譯碼算法。論文提出了一種基于多端口存儲器的并行子交織器解決方法,很好地解決了并行訪問存儲器沖突的問題。 本論文在現場可編程門陣列(FPGA)平臺上實現了一種基于幀分裂和籬笆圖歸零處理的并行Turbo編譯碼器。所實現的并行Turbo編譯碼器在時鐘頻率為33MHz,幀長為1024比特,并行子譯碼器數和最大迭代次數均為4時,可支持8.2Mbps的編譯碼數掘吞吐量,而譯碼時延小于124us。本文還使用EP2C35FPGA芯片設計了系統開發板。該開發板可提供高速以太網MAC/PHY和PCI接口,很好地滿足了通信系統需求。系統測試結果表明,本文所實現的并行Turbo編譯碼器及其開發板運行正確、有效且可靠。 本論文主要分為五章,第一章為緒論,介紹Turbo碼背景和硬件實現相關技術。第二章為基于幀分裂和歸零的并行Turbo編碼的設計與實現,分別介紹了編碼器和譯碼器的RTL設計,還提出了一種基于多端口存儲器的并行子交織器和解交織器設計。第三章討論了使用NIOS處理器的SOC架構,使用SOC架構處理系統和基于NIOSII處理器和uC/0S一2操作系統的架構。第四章介紹了FPGA系統開發板設計與調試的一些工作。最后一章為本文總結及其展望。
上傳時間: 2013-04-24
上傳用戶:ziyu_job1234
數據采集系統是信號與信息處理系統中不可缺少的重要組成部分,同時也是軟件無線電系統中的核心模塊,在現代雷達系統以及無線基站系統中的應用越來越廣泛。為了能夠滿足目前對軟件無線電接收機自適應性及靈活性的要求,并充分體現在高性能FPGA平臺上設計SOC系統的思路,本文提出了由高速高精度A/D轉換芯片、高性能FPGA、PCI總線接口、DB25并行接口組成的高速數據采集系統設計方案及實現方法。其中FPGA作為本系統的控制核心和傳輸橋梁,發揮了極其重要的作用。通過FPGA不僅完成了系統中全部數字電路部分的設計,并且使系統具有了較高的可適應性、可擴展性和可調試性。 在時序數字邏輯設計上,充分利用FPGA中豐富的時序資源,如鎖相環PLL、觸發器,緩沖器FIFO、計數器等,能夠方便的完成對系統輸入輸出時鐘的精確控制以及根據系統需要對各處時序延時進行修正。 在存儲器設計上,采用FPGA片內存儲器。可根據系統需要隨時進行設置,并且能夠方便的完成數據格式的合并、拆分以及數據傳輸率的調整。 在傳輸接口設計上,采用并行接口和PCI總線接口的兩種數據傳輸模式。通過FPGA中的宏功能模塊和IP資源實現了對這兩種接口的邏輯控制,可使系統方便的在兩種傳輸模式下進行切換。 在系統工作過程控制上,通過VB程序編寫了應用于PC端的上層控制軟件。并通過并行接口實現了PC和FPGA之間的交互,從而能夠方便的在PC機上完成對系統工作過程的控制和工作模式的選擇。 在系統調試方面,充分利用QuartuslI軟件中自帶的嵌入式邏輯分析儀SignalTaplI,實時準確的驗證了在系統整個傳輸過程中數據的正確性和時序性,并極大的降低了用常規儀器觀測FPGA中眾多待測引腳的難度。 本文第四章針對FPGA中各功能模塊的邏輯設計進行了詳細分析,并對每個模塊都給出了精確的仿真結果。同時,文中還在其它章節詳細介紹了系統的硬件電路設計、并行接口設計、PCI接口設計、PC端控制軟件設計以及用于調試過程中的SignalTapⅡ嵌入式邏輯分析儀的使用方法,并且也對系統的仿真結果和測試結果給出了分析及討論。最后還附上了系統的PCB版圖、FPGA邏輯設計圖、實物圖及注釋詳細的相關源程序清單。
上傳時間: 2013-06-09
上傳用戶:lh25584
當前正處于第三代移動通信技術發展的關鍵時期,各種與3G相關的無線網絡終端的需求量與日俱增。為3G無線網絡終端選擇一個高性能的處理器,并且提供一套完整的系統解決方案,滿足3G時代人們對數據通信業務的需求,無疑是一個有意義且亟待解決的重要問題。 OMAP(Open Multimedia Applications Platform)是美國德州公司(TI)推出的專門為支持第三代(3G)無線終端應用而設計的應用處理器體系結構。OMAP處理器平臺堪稱無線技術發展的里程碑,它提供了語音、數據和多媒體所需的帶寬和功能,可以極低的功耗為高端3G無線設備提供極佳的性能。 本文的研究內容是開發基于OMAP5910處理器的具有多個擴展接口的嵌入式開發平臺,以及攝像頭顯示驅動程序,以便能為3G相關的無線網絡終端提供一個系統級的解決方案,本文首先介紹了OMAP技術的特點和優點,并對OMAP5910處理器的硬件結構進行了簡單說明,在此基礎上提出了基于OMAP5910嵌入式平臺的FPGA設計,包括用FPGA擴展的接口:觸摸屏接口,硬盤接口,以太網接口;控制的接口:USB口,串口;以及實現的功能:與OMAP5910處理器的通信功能,中斷控制功能,選擇啟動順序功能,復位延時功能。然后介紹了基于OMAP5910的攝像顯示系統的硬件設計,主要包括攝像頭接口和攝像頭模塊,EMIFS和EMIFF接口以及LCD接口。最后描述了嵌入式Linux操作系統下攝像頭驅動程序的完整實現過程。
上傳時間: 2013-05-24
上傳用戶:mfhe2005
采用現場可編程門陣列(FPGA)可以快速實現數字電路,但是用于生成FPGA編程的比特流文件的CAD工具在編制大規模電路時常常需要數小時的時間,以至于許多設計者甚至通過在給定FPGA上采用更多的資源,或者以犧牲電路速度為代價來提高編制速度。電路編制過程中大部分時間花費在布線階段,因此有效的布線算法能極大地減少布線時間。 許多布線算法已經被開發并獲得應用,其中布爾可滿足性(SAT)布線算法及幾何查找布線算法是當前最為流行的兩種。然而它們各有缺點:基于SAT的布線算法在可擴展性上有很大缺陷;幾何查找布線算法雖然具有廣泛的拆線重布線能力,但當實際問題具有嚴格的布線約束條件時,它在布線方案的收斂方面存在很大困難。基于此,本文致力于探索一種能有效解決以上問題的新型算法,具體研究工作和結果可歸納如下。 1、在全面調查FPGA結構的最新研究動態的基礎上,確定了一種FPGA布線結構模型,即一個基于SRAM的對稱陣列(島狀)FPGA結構作為研究對象,該模型僅需3個適合的參數即能表示布線結構。為使所有布線算法可在相同平臺上運行,選擇了美國北卡羅來納州微電子中心的20個大規模電路作為基準,并在布線前采用VPR399對每個電路都生成30個布局,從而使所有的布線算法都能夠直接在這些預制電路上運行。 2、詳細研究了四種幾何查找布線算法,即一種基本迷宮布線算法Lee,一種基于協商的性能驅動的布線算法PathFinder,一種快速的時延驅動的布線算法VPR430和一種協商A
上傳時間: 2013-05-18
上傳用戶:ukuk
紋理映射在計算機圖形計算中屬于光柵化階段,處理的是像素,主要的特點是數據的吞吐量大,對實時系統來說轉換的速度是一個關鍵的因素,人們尋求各種加速算法來提高運算速度。傳統的方法是用更快的處理器,并行算法或專用硬件。隨著數字技術的發展,尤其是可編程邏輯門陣列(FPGAs)的發展,提供了一種新的加速方法。FPGAs在密度和性能上都有突破性的發展,當前的FPGA芯片已經能夠運算各種圖形算法,而在速度上與專用的圖形卡硬件相同。因此,FPGA芯片非常適合這項工作。 本文主要工作包括以下幾個方面: 1、本文提出了一種MIPmapping紋理映射優化方法,改進了MIPmapping映射細化層次算法及紋理圖像的存儲方式,減少紋理尋址的計算量,提高紋理存儲的相關性。詳細內容請閱讀第三章。 2、提出了一種MIPmapping紋理映射優化方法的硬件實現方案,該方案針對移動設備對功耗和面積的要求,以及分辨率不高的特點,在參數空間到紋理地址的計算中用定點數來實現。詳細內容請閱讀第四章。 3、實現了紋理映射流水線單元紋理地址產生電路,及紋理濾波電路的FPGA設計,并給出設計的綜合和仿真結果。詳細內容請閱讀第五章4、實現了符合IEEE 754單精度標準的乘法、乘累加及除法運算器電路。乘法器采用改進型Booth編碼電路以減少部分積數量,用Wallace對部分積進行壓縮;乘累加器采用multiply-add fused算法,對關鍵路徑進行了優化;除法器為基于改進型泰勒級數展開的查找表結構實現,查找表尺寸只有208字節,電路為固定時延,在電路尺寸、延時及復雜度方面進行了較好的平衡。
上傳時間: 2013-04-24
上傳用戶:yxvideo