隨著微電子技術的高速發展,實時圖像處理在多媒體、圖像通信等領域有著越來越廣泛的應用。FPGA就是硬件處理實時圖像數據的理想選擇,基于FPGA的圖像處理專用芯片的研究將成為信息產業的新熱點。 本文以FPGA為平臺,使用VHDL硬件描述語言設計并實現了中值濾波、順序濾波、數學形態學、卷積運算和高斯濾波等圖像處理算法。在設計過程中,通過改進算法和優化結構,在合理地利用硬件資源的條件下,有效地挖掘出算法內在的并行性,采用流水線結構優化算法,提高了頂層濾波模塊的處理速度。在中值濾波器的硬件設計中,本文提出了一種快速中值濾波算法,該算法大大節省了硬件資源,處理速度也很快。在數學形態學算法的硬件實現中,本文提出的最大值濾波和最小值濾波算法大大減少了硬件資源的占用率,適應了流水線設計的要求,提高了圖像處理速度。 整個設計及各個模塊都在Altera公司的開發環境QuartusⅡ以及第三方仿真軟件Modelsim上進行了邏輯綜合以及仿真。綜合和仿真的結果表明,使用FPGA硬件處理圖像數據不僅能夠獲得很好的處理效果,達到較高的工作頻率,處理速度也遠遠高于軟件法處理圖像,可滿足實時圖像處理的要求。 本課題為圖像處理專用FPGA芯片的設計做了有益的探索性嘗試,對今后完成以FPGA圖像處理芯片為核心的實時圖像處理系統的設計有著積極的意義。
上傳時間: 2013-06-08
上傳用戶:shuiyuehen1987
隨著數字視頻廣播的發展,觀眾將會面對越來越多綜合或專門頻道的選擇,欣賞到更高品質,更多服務的節目。而廣播業者則要為這些節目的版權購買,制作而承受更高的成本,單純的廣告收入已經不夠。要求對用戶收取一定的收視費用,而另一方面,調查也顯示用戶是愿意預付一定費用以獲得更好服務的。條件接受系統(Conditional Access system)就是為了商業目的而對某些廣播服務實施接入控制,決定一個數字接受設備能否將特定的廣播節目展現給最終用戶的系統。CA技術要求既能使用戶自由選擇收看節目又能保護廣播業者的利益,確算只有已支付了或即將支付費用的用戶才能收看到所選的電視節目。在數字電視領域中,CA系統無疑將成為發展新服務的必需條件。但是在不同的運營商可能會使用不同的CA系統,在不同的CA系統之間進行互操作所必需共同遵守的最基本條件是:通用的加擾算法。每個用戶接收設備中應集成相應的解擾模塊。在我國國家標準--數字電視條件接收系統GY/Z 175-2001的附錄H中有詳細的描述。 FPGA是英文Field Programmable Gate Array的縮寫,即現場可編程門陣列,它是在PAL、GAL、EPLD等可編程器件的基礎上進一步發展的產物。它是作為專用集成電路(ASIC)領域中的一種半定制電路而出現的,既解決了定制電路的不足,又克服了原有可編程器件門電路數有限的缺點。可以說,FPGA芯片是小批量系統提高系統集成度、可靠性的最佳選擇之一。 首先本文簡要介紹CA系統的目的和組成,FPGA的結構和原理,優勢。然后介紹了利用FPGA來實現CA系統主要組成部分即加擾的原理和步驟,分析算法,劃分邏輯結構,軟件仿真,劃分硬件模塊,硬件性能分析,驗證平臺構建,硬件實現等。 然后對以上各個部分做詳細的闡述。同時為了指導FPGA設計,給出了FPGA的結構和原理與FPGA設計的基本原則、設計的基本技巧、設計的基本流程; 最后給出了該加擾系統的測試與驗證方法以及驗證和測試結果。
上傳時間: 2013-06-22
上傳用戶:chongchong2016
圖像縮放在圖像處理領域中,發揮著重要作用。圖像的分辨率調整和格式變換,都需要用到圖像縮放技術。隨著多媒體技術和大規模集成電路的發展,利用硬件實現視頻圖像無級縮放已成為圖像處理研究的一個重要課題。 圖像縮放通常由插值算法實現。傳統的插值算法由于實現原理的局限性,在縮放時容易引起邊緣鋸齒或細節模糊現象。針對傳統插值算法的這個不足,出現了許多基于邊緣改進的算法。但這些算法一般只能完成2k倍數插值,無法真正做到基于邊緣的無級縮放。 為了實現基于邊緣改進的無級縮放,本文做了如下五個方面的研究工作: 1.系統回顧了圖像縮放技術,包括傳統圖像縮放技術和多邊緣檢測插值,分析了這些圖像縮放技術的優缺點。 2.重點研究了新興的方向多項式插值算法,該算法能夠真正完成基于邊緣改進的無級縮放。 3.提出改進的方向多項式插值算法(IOPI算法),該算法針對硬件實現,做了兩個方面改進:提出EDV算法,簡化邊緣方向的確定;提出Cubic6逼近插值算法(A-Cubic6算法),改善平坦區域縮放效果。其中的EDV算法通過加減、比較模塊,完成邊緣方向的確定。相比原算法中的乘除法、直方圖計算,大大簡化了硬件實現,降低了硬件實現成本。A-Cubic6算法利用查找表簡化了Cubic6點插值算法的實現,而且明顯改善了非邊緣區域的縮放效果。 4.研究縮放算法與圖像質量的評價方法。比較、分析各算法的軟件仿真結果,得出結論:本文提出的IOPI算法在平坦區域和邊緣區域都具有比其它算法更突出的效果。 5.結合實時視頻處理要求,研究了IOPI算法的FPGA實現。已完成最近鄰域插值和A-Cubic6算法的FPGA實現,可以在硬件平臺上穩定工作。
上傳時間: 2013-06-05
上傳用戶:2728460838
為了克服傳統的局部特征匹配算法對噪聲和圖像灰度非線性變換敏感的不足,提出了基于SIFT(Scale Invariant Feature Transform)描述算子的特征匹配算法。該算法首先
上傳時間: 2013-04-24
上傳用戶:hphh
極值型中值濾波算法在高噪聲率下的濾波效果不是很好,主要原因有以下兩個:首先,濾波窗口中過多的噪聲點會使窗口中的點在排序時產生中值偏移;其次是高噪聲率環境下,可能序列中值本身就是是噪聲點。對此,本文提出
上傳時間: 2013-06-26
上傳用戶:小小小熊
本項目完成的是中國地面數字電視融合方案發端系統的FPGA設計與實現。采用Stratix系列的EP1S80F1020C5FPGA為基礎構建了主硬件處理平臺。系統中能量擴散、LDPC編碼、符號交織、星座映射、同步PN頭插入、3780點IFFTOFDM調制以及信號成形4倍插值滾降濾波器等都是基于FPGA硬件設計實現的。本文首先介紹了數字電視的發展現狀,融合方案發端系統的整體結構以及FPGA設計的相關知識。第三章重點、詳細地介紹了基于FPGA的融合方案發端系統除LDPC編碼部分的各個模塊的具體實現,并對級連后的整個系統的性能進行了仿真、分析和驗證。第四章簡要介紹了與融合方案發端系統結構類似的一個窄帶LDPC解碼-誤碼測試實驗平臺發端的FPGA設計,并對該測試平臺的性能進行了分析驗證。我在項目中完成的工作主要有: 1.閱讀相關文獻資料,了解中國地面數字電視融合方案的整體結構和原理。 2.制定了整個發端系統FPGA實現的框架以及各模塊的接口定義。 3.完成了3780點IFFTOFDM的FPGA設計和驗證。 4.完成了4倍插值169階滾降濾波器的算法改進和FPGA設計與驗證。 5.完成了整個融合方案系統的功能仿真、分析和驗證。 6.完成了窄帶LDPC解碼-誤碼測試實驗平臺發端的FPGA設計以及仿真、驗證。
上傳時間: 2013-07-05
上傳用戶:qq521
可編程邏輯器件FPGA(現場可編程門陣列)和CPLD(復雜可編程邏輯器件)越來越多的應用于數字信號處理領域,與傳統的ASIC(專用集成電路)和DSP(數字信號處理器)相比,基于FPGA和CPLD實現的數字信號處理系統具有更高的實時性和可嵌入性,能夠方便地實現系統的集成與功能擴展。 FFT的硬件結構主要包括蝶形處理器、存儲單元、地址生成單元與控制單元。本文提出的算法在蝶形處理器內引入流水線結構,提高了FFT的運算速度。同時,流水線寄存器能夠寄存蝶形運算中的公共項,這樣在設計蝶形處理器時只用到了一個乘法器和兩個加法器,降低了硬件電路的復雜度。 為了進一步提高FFT的運算速度,本文在深入研究各種乘法器算法的基礎上,為蝶形處理器設計了一個并行乘法器。在實現該乘法器時,本文采用改進的布斯算法,用以減少部分積的個數。同時,使用華萊士樹結構和4-2壓縮器對部分積并行相加。 本文以32點復數FFT為例進行設計與邏輯綜合。通過設計相應的存儲單元,地址生成單元和控制單元完成FFT電路。電路的仿真結果與軟件計算結果相符,證明了本文所提出的算法的正確性。 另外,本文還對設計結果提出了進一步的改進方案,在乘法器內加入一級流水線寄存器,使FFT的速度能夠提高到當前速度的兩倍,這在實時性要求較高的場合具有極高的實用價值。
上傳時間: 2013-07-18
上傳用戶:wpt
本文主要對基于FPGA芯片的橢圓曲線密碼算法的實現及優化設計進行了研究。由于點乘運算極大影響了橢圓曲線密碼系統的加/解密速度,本文對點乘運算的FPGA設計進行了重點優化。首先比較分析了三種點乘算法,從運算復雜度的角度確定了蒙哥馬里算法是最利于FPGA芯片實現的。然后根據蒙哥馬里算法,用VerilogHDL語言實現了基于FPGA芯片的橢圓域中的基本運算(模加、模乘、模平方和模逆)。通過三種模乘算法在FPGA上的實現,設計出一種串并混合的乘法器,達到了面積與速度的最佳匹配。 本文利用Modelsim對本課題設計的硬件系統進行了仿真實驗,驗證了所設計的硬件系統完成了橢圓曲線密碼算法在FPGA上的實現。最后使用SynplifyPro進行綜合及布局布線,綜合報告文件證明了本課題所設計的ECC加密系統達到了優化芯片速度和面積的目的。
上傳時間: 2013-04-24
上傳用戶:thuyenvinh
當前,在系統級互連設計中高速串行I/O技術迅速取代傳統的并行I/O技術正成為業界趨勢。人們已經意識到串行I/O“潮流”是不可避免的,因為在高于1Gbps的速度下,并行I/O方案已經達到了物理極限,不能再提供可靠和經濟的信號同步方法。基于串行I/O的設計帶來許多傳統并行方法所無法提供的優點,包括:更少的器件引腳、更低的電路板空間要求、減少印刷電路板(PCB)層數、PCB布局布線更容易、接頭更小、EMI更少,而且抵抗噪聲的能力也更好。高速串行I/O技術正被越來越廣泛地應用于各種系統設計中,包括PC、消費電子、海量存儲、服務器、通信網絡、工業計算和控制、測試設備等。迄今業界已經發展出了多種串行系統接口標準,如PCI Express、串行RapidIO、InfiniBand、千兆以太網、10G以太網XAUI、串行ATA等等。 Aurora協議是為私有上層協議或標準上層協議提供透明接口的串行互連協議,它允許任何數據分組通過Aurora協議封裝并在芯片間、電路板間甚至機箱間傳輸。Aurora鏈路層協議在物理層采用千兆位串行技術,每物理通道的傳輸波特率可從622Mbps擴展到3.125Gbps。Aurora還可將1至16個物理通道綁定在一起形成一個虛擬鏈路。16個通道綁定而成的虛擬鏈路可提供50Gbps的傳輸波特率和最大40Gbps的全雙工數據傳輸速率。Aurora可優化支持范圍廣泛的應用,如太位級路由器和交換機、遠程接入交換機、HDTV廣播系統、分布式服務器和存儲子系統等需要極高數據傳輸速率的應用。 傳統的標準背板如VME總線和CompactPCI總線都是采用并行總線方式。然而對帶寬需求的不斷增加使新興的高速串行總線背板正在逐漸取代傳統的并行總線背板。現在,高速串行背板速率普遍從622Mbps到3.125Gbps,甚至超過10Gbps。AdvancedTCA(先進電信計算架構)正是在這種背景下作為新一代的標準背板平臺被提出并得到快速的發展。它由PCI工業計算機制造商協會(PICMG)開發,其主要目的是定義一種開放的通信和計算架構,使它們能被方便而迅速地集成,滿足高性能系統業務的要求。ATCA作為標準串行總線結構,支持高速互聯、不同背板拓撲、高信號密度、標準機械與電氣特性、足夠步線長度等特性,滿足當前和未來高系統帶寬的要求。 采用FPGA設計高速串行接口將為設計帶來巨大的靈活性和可擴展能力。Xilinx Virtex-IIPro系列FPGA芯片內置了最多24個RocketIO收發器,提供從622Mbps到3.125Gbps的數據速率并支持所有新興的高速串行I/O接口標準。結合其強大的邏輯處理能力、豐富的IP核心支持和內置PowerPC處理器,為企業從并行連接向串行連接的過渡提供了一個理想的連接平臺。 本文論述了采用Xilinx Virtex-IIPro FPGA設計傳輸速率為2.5Gbps的高速串行背板接口,該背板接口完全符合PICMG3.0規范。本文對串行高速通道技術的發展背景、現狀及應用進行了簡要的介紹和分析,詳細分析了所涉及到的主要技術包括線路編解碼、控制字符、逗點檢測、擾碼、時鐘校正、通道綁定、預加重等。同時對AdvancedTCA規范以及Aurora鏈路層協議進行了分析, 并在此基礎上給出了FPGA的設計方法。最后介紹了基于Virtex-IIPro FPGA的ATCA接口板和MultiBERT設計工具,可在標準ATCA機框內完成單通道速率為2.5Gbps的全網格互聯。
上傳時間: 2013-05-29
上傳用戶:frank1234
相對于JPEG中二維離散余弦變換(2DDCT)來說,在JPEG2000標準中,二維離散小波變換(2DDWT)是其圖像壓縮系統的核心變換。在很多需要進行實時處理圖像的系統中,如數碼相機、遙感遙測、衛星通信、多媒體通信、便攜式攝像機、移動通信等系統,需要用芯片實現圖像的編解碼壓縮過程。雖然有許多研究工作者對圖像處理的小波變換進行了研究,但大都只偏重算法研究,對算法硬件實現時的復雜性考慮較少,對圖像處理的小波變換硬件實現的研究也較少。 本文針對圖像處理的小波變換算法及其硬件實現進行了研究。對文獻[13]提出的“內嵌延拓提升小波變換”(Combiningthedata-extensionprocedureintothelifting-basedDWTcore)快速算法進行仔細分析,提出一種基于提升方式的5/3小波變換適合硬件實現的算法,在MATLAB中仿真驗證了該算法,證明其是正確的。并設計了該算法的硬件結構,在MATLAT的Simulink中進行仿真,對該結構進行VHDL語言的寄存器傳輸級(RTL)描述與仿真,成功綜合到Altera公司的FPGA器件中進行驗證通過。本算法與傳統的小波變換的邊界處理方法比較:由于將其邊界延拓過程內嵌于小波變換模塊中,使該硬件結構無需額外的邊界延拓過程,減少小波變換過程中對內存的讀寫量,從而達到減少內存使用量,降低功耗,提高硬件利用率和運算速度的特點。本算法與文獻[13]提出的算法相比較:無需增加額外的硬件計算模塊,又具有在硬件實現時不改變原來的提升小波算法的規則性結構的特點。這種小波變換硬件芯片的實現不僅適用于JPEG2000的5/3無損小波變換,當然也可用于其它各種實時圖像壓縮處理硬件系統。
上傳時間: 2013-06-13
上傳用戶:jhksyghr