隨著信息產業的不斷發展,人們對數據傳輸速率要求越來越高,從而對數據發送端和接收端的性能都提出了更高的要求。接收機的一個重要任務就是在于克服各種非理想因素的干擾下,從接收到的被噪聲污染的數據信號中提取同步信息,并進而將數據正確的恢復出來。而數據恢復電路是光纖通信和其他許多類似數字通信領域中不可或缺的關鍵電路,其性能決定了接收端的總體性能。 目前,數據恢復電路的結構主要有“時鐘提取”和“過采樣”兩種結構。基于“過采樣”的數據恢復方法的關鍵是過采樣,即通過引入參考時鐘,并增加時鐘源個數的方式來代替第一種方法中的“時鐘提取”。與“時鐘提取”的數據恢復方法相比,基于“過采樣”的數據恢復方法在性能上還有較大的差距,但是后者擁有高帶寬、立即鎖存能力、較低的等待時間和更高的抖動容限,更易于通過數字的方法實現,實現更簡單,成本更低,并且這是一種數字化的模擬技術。如果能通過“過采樣”方法在普通的邏輯電路上實現622.08Mb/s甚至更高速率的數據恢復,并將它作為一個IP模塊來代替專用的時鐘恢復芯片,這無疑將是性能和成本的較好結合。 本文主要研究“過采樣”數據恢復電路的基本原理,通過全數字的設計方法,給出了在低成本可編程器件FPGA上實現數據恢復電路兩種不同的過采樣的實現方案,即基于時鐘延遲的過采樣和基于數據延遲的過采樣。基于時鐘延遲的過采樣數據恢復電路方案,通過測試驗證,其最高恢復的數據傳輸率可達到640Mb/s。測試結果表明,采用該方案實現的時鐘恢復電路可工作在光纖通信系統STM-4速率級,即622.08MHz頻率上,各方面指標基本符合要求。
上傳時間: 2013-04-24
上傳用戶:axxsa
本文以直接頻率合成和偽隨機碼的設計與實現為中心,對擴頻通信的基本理論、信號源的總體結構、載波調制、濾波器設計等問題進行了深入的分析和研究,并給出了模塊的硬件實現方案。 首先介紹了FPGA技術的發展和應用,包括VHDL語言的基本語法結構和FPGA器件的開發設計流程等等。詳細地分析了各類頻率合成器的基礎上提出采用直接數字式頻率合成器(DDS)實現低相位噪聲、高分辨率、高精度和高穩定度的信號源。研究了測距偽隨機碼的原理,確定選用移位序列作為系統的擴頻碼序列,并選取了符合本系統使用的移位序列擴頻碼。分別給出并分析了相應的FPGA硬件實現電路。 對于載波調制這一關鍵技術,提出了采用二進制相移鍵控相位選擇法并相應作了硬件實現。分析與研究了射頻寬帶濾波器應具有的傳輸特性,通過分析巴特沃思濾波器、切比雪夫濾波器、橢圓濾波器和貝塞爾濾波器這幾種濾波器的頻譜特性,設計了發生器射頻寬帶濾波器。最后給出具體設計實現了的信號發生器的輸出波形。
上傳時間: 2013-04-24
上傳用戶:greethzhang
隨著國民經濟的發展和社會的進步,人們越來越需要便捷的交通工具,從而促進了汽車工業的發展,同時汽車發動機檢測維修等相關行業也發展起來。在汽車發動機檢測維修中,發動機電腦(Electronic Control.Unit-ECU)檢測維修是其中最關鍵的部分。發動機電腦根據發動機的曲軸或凸輪軸傳感器信號控制發動機的噴油、點火和排氣。所以,維修發動機電腦時,必須對其施加正確的信號。目前,許多發動機的曲軸和凸輪軸傳感器信號已不再是正弦波和方波等傳統信號,而是多種復雜波形信號。為了能夠提供這種信號,本文研究并設計了一種能夠產生復雜波形的低成本任意波形發生器(Arbitrary Waveform Generator-AWG)。 本文提出的任意波形發生器依據直接數字頻率合成(Direct Digial FrequencySynthesis-DDFS)原理,采用自行設計現場可編程門陣列(FPGA)的方案實現頻率合成,擴展數據存儲器存儲波形的量化幅值(波形數據),在微控制單元(MCU)的控制與協調下輸出頻率和相位均可調的信號。 任意波形發生器主要由用戶控制界面、DDFS模塊、放大及濾波、微控制器系統和電源模塊五部分組成。在設計中采用FPGA芯片EPF10K10QC208-4實現DDFS的硬件算法。波形調整及濾波由兩級放大電路來完成:第一級對D/A輸出信號進行調整;第二級完成信號濾波及信號幅值和偏移量的調節。電源模塊利用三端集成穩壓器進行電壓值變換,利用極性轉換芯片ICL7660實現正負極性轉換。 該任意波形發生器與通用模擬信號源相比具有:輸出頻率誤差小,分辨率高,可產生任意波形,成本低,體積小,使用方便,工作穩定等優點,十分適合汽車維修行業使用,具有較好的市場前景。
上傳時間: 2013-04-24
上傳用戶:KIM66
擴展頻譜通信技術,它的突出優點是保密性好,抗干擾性強.隨著通信系統與現代計算機軟、硬件技術與微電子技術發展,越來越多的通信系統構建于這種技術之上.在實際擴頻通信系統工程中,用得比較普遍的是直擴方式和跳頻方式,它們的不同在于直擴是采取隱藏的方式對抗干擾,而跳頻采取躲避的方式. 西方國家早在20世紀50年代就開始對跳頻通信進行研究,在上個世紀末的幾次局部戰爭中,跳頻電臺得到了普遍的應用.跳頻通信的發展促進了其對抗技術的發展,目前,世界主要幾個軍事先進的國家,已經研究出高性能的跳頻通信對抗設備,國內這方面的發展相對國外差距比較大. 未來戰爭是科學技術的斗爭,研究跳頻通信對抗勢在必行.基于這種目的,本文研究和設計了跳頻檢測的FPGA實現,利用基于時頻分析的處理方法,完成了跳頻信號檢測的FPGA實現,通過測試,表明系統達到了設計要求,可以滿足實際的需要.主要內容包括: 1.概述了跳頻檢測接收研究的發展動態,闡述了擴展頻譜通信及短時傅立葉變換的原理. 2.分析了基于快速傅立葉變換(FFT)處理跳頻信號,檢測跳頻的可行性,利用FFT檢測頻譜的原理,合理使用頻譜采樣策略,做到了增加頻譜利用率,提高了檢測概率和分析信噪比;利用抽取內插技術完成數據速率的轉換,使其滿足后續信號的處理要求;利用同相和正交的DDC實現結構,完成對跳頻信號的解跳. 3.設計完成了跳頻信號檢測與接收系統的FPGA實現,其主要包括:數據速率變換的實現,FIR低通濾波器的實現,快速傅立葉變換(FFT)的實現,下變頻的實現等.在濾波器的實現中,提出了兩種設計方法:基于常系數乘法器和分布式算法濾波器,分析了上述兩種方法的優缺點,選擇用分布式算法實現設計中的低通濾波器;在快速傅立葉變換實現中,分析了基2和基4的算法結構,并分別實現了基2和基4的算法,滿足了不同場合對處理器的要求.在下變頻的設計中,使用濾波器的多相結構完成抽取的實現,并使用低通濾波器使信號帶寬滿足指標的要求.此外,設計中還包括雙端口RAM的實現,比較模塊的實現、數據緩存模塊和串并轉換模塊的實現. 4.介紹了實現系統的硬件平臺.
上傳時間: 2013-04-24
上傳用戶:zttztt2005
可靠通信要求消息從信源到信宿盡量無誤傳輸,這就要求通信系統具有很好的糾錯能力,如使用差錯控制編碼。自仙農定理提出以來,先后有許多糾錯編碼被相繼提出,例如漢明碼,BCH碼和RS碼等,而C。Berrou等人于1993年提出的Turbo碼以其優異的糾錯性能成為通信界的一個里程碑。 然而,Turbo碼迭代譯碼復雜度大,導致其譯碼延時大,故而在工程中的應用受到一定限制,而并行Turbo譯碼可以很好地解決上述問題。本論文的主要工作是通過硬件實現一種基于幀分裂和歸零處理的新型并行Turbo編譯碼算法。論文提出了一種基于多端口存儲器的并行子交織器解決方法,很好地解決了并行訪問存儲器沖突的問題。 本論文在現場可編程門陣列(FPGA)平臺上實現了一種基于幀分裂和籬笆圖歸零處理的并行Turbo編譯碼器。所實現的并行Turbo編譯碼器在時鐘頻率為33MHz,幀長為1024比特,并行子譯碼器數和最大迭代次數均為4時,可支持8.2Mbps的編譯碼數掘吞吐量,而譯碼時延小于124us。本文還使用EP2C35FPGA芯片設計了系統開發板。該開發板可提供高速以太網MAC/PHY和PCI接口,很好地滿足了通信系統需求。系統測試結果表明,本文所實現的并行Turbo編譯碼器及其開發板運行正確、有效且可靠。 本論文主要分為五章,第一章為緒論,介紹Turbo碼背景和硬件實現相關技術。第二章為基于幀分裂和歸零的并行Turbo編碼的設計與實現,分別介紹了編碼器和譯碼器的RTL設計,還提出了一種基于多端口存儲器的并行子交織器和解交織器設計。第三章討論了使用NIOS處理器的SOC架構,使用SOC架構處理系統和基于NIOSII處理器和uC/0S一2操作系統的架構。第四章介紹了FPGA系統開發板設計與調試的一些工作。最后一章為本文總結及其展望。
上傳時間: 2013-04-24
上傳用戶:ziyu_job1234
基于單片機的數控電流源 很好的文章 我是為了積分下東西的 對不起了
上傳時間: 2013-07-06
上傳用戶:xoxoliguozhi
本文進行了基于FPGA的GPS直序偽碼擴頻接收機的設計和數字化硬件實現。論文首先對GPS衛星導航定位系統進行了分析,并對與數字化接收機直接相關聯的GPS信號中頻部分結合實際系統要求進行了設計和分析,由此確定了數字化偽碼捕獲跟蹤接收機研制的具體要求,之后完成了接收機中頻數字化方案設計。同時對偽碼捕獲跟蹤后端的載波捕獲跟蹤的實現方案進行了描述和分析。最后利用EDA工具在FPGA芯片上實現了GPS數字化接收機的偽碼捕獲跟蹤。 受工作環境的制約,GPS衛星接收機系統首先表現為功率受限系統,接收機必須滿足在低信噪比條件下工作。同時接收機與衛星間高動態產生的多普勒頻率,給接收機實現快速捕獲帶來了難度。通過仿真分析,綜合了實現難度和性能兩方面因素,針對小信噪比工作條件提出了改進型的序貫偽碼捕獲實施方案。同時按照捕獲概率和時間的要求,對接收機偏壓、上、下門限、NCO增益等進行了設計和仿真分析,確定了捕獲的數字化實現方案,偽碼跟蹤采用超前滯后環方案。捕獲完成后可使本地偽碼與接收偽碼的相對誤差保持在±1/4碼元范圍內,而跟蹤環路的跟蹤范圍為±4/3碼元,保證了捕獲到跟蹤的可靠銜接,同時采用可變環路帶寬措施解決了跟蹤速度和精度的矛盾。 在數字化實現設計中,給出了詳細的數字化實現方案和分析,這樣在保證工作精度的同時盡量減少硬件資源的開銷,利用EDA工具,采用Veilog設計語言在Xilinx的VirtexII系列的XC2V500fg256的FPGA上完成數字化接收機偽碼捕獲跟蹤的實現,并在其開發平臺上對數字化接收機進行了仿真驗證,在給定的工作條件下達到了設計性能和指標要求。
上傳時間: 2013-04-24
上傳用戶:15510133306
一般由信源發出的數字基帶信號含有豐富的低頻分量,甚至直流分量,這些信號往往不宜直接用于傳輸,易產生碼間干擾進而直接影響傳輸的可靠性,因而要對其進行編碼以便傳輸。傳統的井下信號在傳輸過程中普遍采用曼徹斯特碼的編解碼方式,而該方式的地面解碼電路復雜。FPGA(現場可編程門陣列)作為一種新興的可編程邏輯器件,具有較高的集成度,能將編解碼電路集成在一片芯片上,而HDB3碼(三階高密度雙極性碼)具有解碼規則簡單,無直流,低頻成份少,可打破長連0和提取同步方便等優點。基于上述情況,本文提出了基于FPGA的}tDB3編譯碼設計方案。 該研究的總體設計方案包括用MATLAB進行HDB3編譯碼算法的驗證,基于FPGA的HDB3碼編譯碼設計與仿真,結果分析與比較三大部分。為了保證該設計的可靠性,首先是進行編譯碼的算法驗證;其次通過在FPGA的集成設計環境QuartusⅡ軟件中完成HDB3碼的編譯、綜合、仿真等步驟,通過下載電纜下載到特定的FPGA芯片上,用邏輯分析儀進行時序仿真;最后將算法驗證結果與仿真結果作一對比,分析該研究的可行性與可靠性。 研究表明,基于FPGA的HDB3編譯碼設計具有體積小,譯碼簡單,編程靈活,集成度高,可靠等優點。
上傳時間: 2013-04-24
上傳用戶:siguazgb
隨著科學技術水平的不斷提高,在科研和生產過程中為了更加真實的反映被測對象的性質,對測試系統的性能要求越來越高。傳統的測試裝置,由于傳輸速度低或安裝不便等問題已不能滿足科研和生產的實際需要。USB技術的出現很好的解決了上述問題。USB總線具有支持即插即用、易于擴展、傳輸速率高(USB2.0協議下為480Mbps)等優點,已逐漸得到廣泛的應用。 本課題研究并設計了一套基于USB2.0的數據采集系統。論文首先詳細介紹了USB總線協議,然后從系統的總體結構、硬件電路、軟件程序以及系統性能檢測等幾個方面,詳細闡述了系統的設計思想和實現方案。系統采用雙12位A/D轉換器,提供兩條模擬信號通道,可以同時采集雙路信號,最高的采樣率為200KHz。USB接口芯片采用Cypress公司的CY7C68013。論文詳細介紹了其在SlaveFIFO接口模式下的電路設計和程序設計。系統應用FPGA芯片作系統的核心控制,控制系統的數據采集和與USB接口芯片的數據交換,并產生其中的邏輯控制信號和時序信號。同時應用FPGA芯片作系統的核心控制可提高了系統穩定性、減小設備的體積。系統的軟件設計,主要包括FPGA芯片中的邏輯、時序控制程序、8051固件程序、客戶應用程序及其驅動程序。客戶端選擇了微軟的Visual Studio6.0 C++作開發平臺,雖然增加了復雜程度,但是軟件執行效率及重用性均得到提高。 最后,應用基于USB2.0的數據采集系統測試標準信號及電木的導熱系數,以驗證測試系統的可靠信與準確性。
上傳時間: 2013-04-24
上傳用戶:鳳臨西北
人體血液成份的無創檢測是生物醫學領域尚未攻克的前沿課題之一,動態光譜法在理論上克服了其它檢測方法難以逾越的障礙——個體差異和測量條件對檢測結果的影響。實現動態光譜檢測,其關鍵在于采集多波長的光電容積脈搏波信號,并對其進行處理。針對動態光譜檢測中信號微弱、信噪比低、處理數據量大的特點,本文設計了基于FPGA和面陣CCD攝像頭的動態光譜數據采集與預處理系統,提高檢測精度,采集出滿足動態光譜信號提取要求的光電脈搏波;并對動態光譜頻域提取法的核心算法FFT的FPGA實現進行研究。 課題提出用高靈敏度的面陣CCD攝像頭替代常規光柵光譜儀中的光電接收器,實現對多波長的光電容積脈搏波的檢測。結合面陣CCD的二維圖像特點,采用信號累加法去除噪聲,提高信號的信噪比。 創新性的提出一種不同于以往的信號累加方法——將處于同一行的視頻信號在采樣過程中直接累加,然后再進行傳輸和存儲。不同于幀累加和異行累加,這種同行累加方式不但大大的提高了信號的信噪比,同時減小了數據的傳輸速度和傳輸量,降低了對存儲器容量的要求,改善了動態光譜信號檢測系統的性能。 針對面陣CCD攝像頭輸出的復合視頻信號的特點,設計視頻信號解調電路,得到高速、高精度的數字視頻信號和準確的視頻同步信號,用于后續的視頻信號采集與處理。 根據動態光譜信號檢測和視頻信號采集的要求,選擇可編程邏輯器件FPGA作為硬件平臺,設計并實現了基于FPGA和面陣CCD攝像頭的光電脈搏波采集與預處理系統。該系統實現了視頻信號的精確定位,通過光譜信號的高速同行累加,實現了光電脈搏波信號的高精度檢測。系統采用基于FPGA的Nios II嵌入式處理器系統,通過對其應用程序的開發,可靠的實現了數據的采集、傳輸和存儲,提高了系統的集成度,降低了開發成本。 為實現動態光譜信號的頻域提取,研究了基于FPGA的FFT實現方案,對各關鍵模塊進行設計,為動態光譜信號的進一步處理打下良好的基礎。 最后,通過實驗證明了系統數據采集的正確性和信號預處理的可行性,得到了符合動態光譜信號提取要求的脈搏波信號。
上傳時間: 2013-04-24
上傳用戶:cknck