MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE, Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n), wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). This book provides a comprehensive introduction to the basic theory and practice of wireless channel modeling, OFDM, and MIMO, with MATLAB ? programs to simulate the underlying techniques on MIMO-OFDMsystems.Thisbookisprimarilydesignedforengineersandresearcherswhoare interested in learning various MIMO-OFDM techniques and applying them to wireless communications.
標簽: Communications MIMO-OFDM Wireless MATLAB with
上傳時間: 2020-05-28
上傳用戶:shancjb
Smartphones have become a key element in providing greater user access to the mobile Internet. Many complex applications which used to be limited to PCs, have been developed and operated on smartphones. These applications extend the functionalities of smartphones, making them more convenient for users to be connected. However, they also greatly increase the power consumption of smartphones, making users frustrated with long delays in Web browsing.
標簽: Browsing Mobile Cloud Using Web the
上傳時間: 2020-05-30
上傳用戶:shancjb
This book is about multipoint cooperative communication, a key technology to overcome the long-standing problem of limited transmission rate caused by inter- point interference. However, the multipoint cooperative communication is not an isolated technology. Instead, it covers a vast range of research areas such as the multiple-input multiple-outputsystem, the relay network, channel state information issues, inter-point radio resource management operations, coordinated or joint transmissions, etc. We suppose that any attempt trying to thoroughly analyze the multipoint cooperative communication technology might end up working on a cyclopedia for modern communication systems and easily get lost in discussing all kinds of cooperative communication schemes as well as the associated models and their variations.
標簽: Communication Multi-point Cooperative Systems
上傳時間: 2020-05-31
上傳用戶:shancjb
The ever-increasing demand for private and sensitive data transmission over wireless net- works has made security a crucial concern in the current and future large-scale, dynamic, and heterogeneous wireless communication systems. To address this challenge, computer scientists and engineers have tried hard to continuously come up with improved crypto- graphic algorithms. But typically we do not need to wait too long to find an efficient way to crack these algorithms. With the rapid progress of computational devices, the current cryptographic methods are already becoming more unreliable. In recent years, wireless re- searchers have sought a new security paradigm termed physical layer security. Unlike the traditional cryptographic approach which ignores the effect of the wireless medium, physi- cal layer security exploits the important characteristics of wireless channel, such as fading, interference, and noise, for improving the communication security against eavesdropping attacks. This new security paradigm is expected to complement and significantly increase the overall communication security of future wireless networks.
標簽: Communications Physical Security Wireless Layer in
上傳時間: 2020-05-31
上傳用戶:shancjb
Transmit power in wireless cellular networks is a key degree of freedom in the management of interference, energy, and connectivity. Power control in both uplink and downlink of a cellular network has been extensively studied, especially over the last 15 years, and some of the results have enabled the continuous evolution and significant impact of the digital cellular technology.
標簽: Cellular Networks Wireless Control Power in
上傳時間: 2020-05-31
上傳用戶:shancjb
Driven by the desire to boost the quality of service of wireless systems closer to that afforded by wireline systems, space-time processing for multiple-input multiple-output (MIMO) wireless communications research has drawn remarkable interest in recent years. Excit- ing theoretical advances, complemented by rapid transition of research results to industry products and services, have created a vibrant and growing area that is already established by all counts. This offers a good opportunity to reflect on key developments in the area during the past decade and also outline emerging trends.
標簽: Space-Time Processing
上傳時間: 2020-06-01
上傳用戶:shancjb
Part I provides a compact survey on classical stochastic geometry models. The basic models defined in this part will be used and extended throughout the whole monograph, and in particular to SINR based models. Note however that these classical stochastic models can be used in a variety of contexts which go far beyond the modeling of wireless networks. Chapter 1 reviews the definition and basic properties of Poisson point processes in Euclidean space. We review key operations on Poisson point processes (thinning, superposition, displacement) as well as key formulas like Campbell’s formula. Chapter 2 is focused on properties of the spatial shot-noise process: its continuity properties, its Laplace transform, its moments etc. Both additive and max shot-noise processes are studied. Chapter 3 bears on coverage processes, and in particular on the Boolean model. Its basic coverage characteristics are reviewed. We also give a brief account of its percolation properties. Chapter 4 studies random tessellations; the main focus is on Poisson–Voronoi tessellations and cells. We also discuss various random objects associated with bivariate point processes such as the set of points of the first point process that fall in a Voronoi cell w.r.t. the second point process.
標簽: Stochastic Geometry Networks Wireless Volume and
上傳時間: 2020-06-01
上傳用戶:shancjb
A wireless communication network can be viewed as a collection of nodes, located in some domain, which can in turn be transmitters or receivers (depending on the network considered, nodes may be mobile users, base stations in a cellular network, access points of a WiFi mesh etc.). At a given time, several nodes transmit simultaneously, each toward its own receiver. Each transmitter–receiver pair requires its own wireless link. The signal received from the link transmitter may be jammed by the signals received from the other transmitters. Even in the simplest model where the signal power radiated from a point decays in an isotropic way with Euclidean distance, the geometry of the locations of the nodes plays a key role since it determines the signal to interference and noise ratio (SINR) at each receiver and hence the possibility of establishing simultaneously this collection of links at a given bit rate. The interference seen by a receiver is the sum of the signal powers received from all transmitters, except its own transmitter.
標簽: Stochastic Geometry Networks Wireless Volume and II
上傳時間: 2020-06-01
上傳用戶:shancjb
The ability to analyze system or circuit behavior is one of the key requirements for successful design. To put an idea to work, a designer needs both the knowledge and tools for analyzing the behavior of that new system architecture or that experi- mental circuit topology. Design decisions are grounded on the results obtained from analysis.
上傳時間: 2020-06-01
上傳用戶:shancjb
When thinking about mobile radio engineers there is a tendency to assume that the engineering function relates solely to the technical aspects of the network, such as the equipment design or the network design. That is certainly a key part of the role of a mobile radio engineer. However,increasinglyengineersarerequiredtointeractwithprofession- als from other divisions. The “complete wireless professional” should know about mobile networks; fixed networks; other types of mobile systems; regulatory and government policy; the requirements of the users; and financial, legal, and marketing issues.
標簽: Communications Complete Wireless The
上傳時間: 2020-06-01
上傳用戶:shancjb