Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
Smart Grids provide many benefits for society. Reliability, observability across the
energy distribution system and the exchange of information between devices are just
some of the features that make Smart Grids so attractive. One of the main products of
a Smart Grid is to data. The amount of data available nowadays increases fast and carries
several kinds of information. Smart metres allow engineers to perform multiple
measurements and analyse such data. For example, information about consumption,
power quality and digital protection, among others, can be extracted. However, the main
challenge in extracting information from data arises from the data quality. In fact, many
sectors of the society can benefit from such data. Hence, this information needs to be
properly stored and readily available. In this chapter, we will address the main concepts
involving Technology Information, Data Mining, Big Data and clustering for deploying
information on Smart Grids.
Fordecades,microwavelineofsight(LOS)linkshavebeenoneofthebasictechnolo-
gies used to build telephone networks. Until 1980, the fast rollout of high capacity
transport networks and deployment of links in areas with challenging geographic
characteristics could not be understood without this technology.
Since the advent of optical communications, a great technological effort has
been devoted to the exploitation of the huge bandwidth of optical fibers. Start-
ing from a few Mb/s single channel systems, a fast and constant technological
development has led to the actual 10 Gb/s per channel dense wavelength di-
vision multiplexing (DWDM) systems, with dozens of channels on a single
fiber. Transmitters and receivers are now ready for 40 Gb/s, whereas hundreds
of channels can be simultaneously amplified by optical amplifiers.
With all the recent hype over radio frequency identification (RFID) and
the requirements to implement it, you might think that RFID can turn
water into wine, transform lead into gold, and cure the world’s diseases. You
might also be worried that RFID will enable Big Brother to track your move-
ments to within a foot of your location from a satellite five hundred miles up
in space. The truth is, RFID can do none of these things.
In this chapter, you find out the basics of what RFID is, what forces are dri-
ving RFID as a replacement for the bar code in the marketplace, and what
benefits RFID can offer
Radio frequency identifi cation (RFID) is a modern wireless data transmission and
reception technique for applications including automatic identifi cation, asset track-
ing and security surveillance. As barcodes and other means of identifi cation and
asset tracking are inadequate for recent demands, RFID technology has attracted
interest for applications such as logistics, supply chain management, asset tracking
and security access control.
基于TMS320F2812 光伏并網發電模擬裝置PROTEL設計原理圖+PCB+軟件源碼+WORD論文文檔,硬件采用2層板設計,PROTEL99SE 設計的工程文件,包括完整的原理圖和PCB文件,可以做為你的學習設計參考。 摘要:本文實現了一個基于TMS320F2812 DSP芯片的光伏并網發電模擬裝置,采用直流穩壓源和滑動變阻器來模擬光伏電池。通過TMS320F2812 DSP芯片ADC模塊實時采樣模擬電網電壓的正弦參考信號、光伏電池輸出電壓、負載電壓電流反饋信號等。經過數據處理后,用PWM模塊產生實時的SPWM 波,控制MOSFET逆變全橋輸出正弦波。本文用PI控制算法實現了輸出信號對給定模擬電網電壓的正弦參考信號的頻率和相位跟蹤,用恒定電壓法實現了光伏電池最大功率點跟蹤(MPPT),從而達到模擬并網的效果。另外本裝置還實現了光伏電池輸出欠壓、負載過流保護功能以及光伏電池輸出欠壓、過流保護自恢復功能、聲光報警功能、孤島效應的檢測、保護與自恢復功能。系統測試結果表明本設計完全滿定設計要求。關鍵詞:光伏并網,MPPT,DSP Photovoltaic Grid-connected generation simulator Zhangyuxin,Tantiancheng,Xiewuyang(College of Electrical Engineering, Chongqing University)Abstract: This paper presents a photovoltaic grid-connected generation simulator which is based on TMS320F2812 DSP, with a DC voltage source and a variable resistor to simulate the characteristic of photovoltaic cells. We use the internal AD converter to real-time sampling the referenced grid voltage signal, outputting voltage of photovoltaic, feedback outputting voltage and current signal. The PWM module generates SVPWM according to the calculation of the real-time sampling data, to control the full MOSFET inverter bridge output sine wave. We realized that the output voltage of the simulator can track the frequency and phase of the referenced grid voltage with PI regulation, and the maximum photovoltaic power tracking with constant voltage regulation, thereby achieved the purpose of grid-connected simulation. Additionally, this device has the over-voltage and over-current protection, audible and visual alarm, islanding detecting and protection, and it can recover automatically. The testing shows that our design is feasible.Keywords: Photovoltaic Grid-connected,MPPT,DSP 目錄引言 11. 方案論證 11.1. 總體介紹 11.2. 光伏電池模擬裝置 11.3. DC-AC逆變橋 11.4. MOSFET驅動電路方案 21.5. 逆變電路的變頻控制方案 22. 理論分析與計算 22.1. SPWM產生 22.1.1. 規則采樣法 22.1.2. SPWM 脈沖的計算公式 32.1.3. SPWM 脈沖計算公式中的參數計算 32.1.4. TMS320F2812 DSP控制器的事件管理單元 42.1.5. 軟件設計方法 62.2. MPPT的控制方法與參數計算 72.3. 同頻、同相的控制方法和參數計算 8
74HC595 A4950 MAX3232 ULN2003AD STM32F207VCT6 AD集成封裝庫,原理圖庫器件型號列表:Library Component Count : 53Name Description----------------------------------------------------------------------------------------------------1N4148 High Conductance Fast Diode1N4448 High Conductance Fast Diode1N914 High Conductance Fast Diode1N914A High Conductance Fast Diode1N914B High Conductance Fast Diode1N916 High Conductance Fast Diode1N916A High Conductance Fast Diode1N916B High Conductance Fast Diode2N3904 NPN General Purpose Amplifier74ALS86 74HC595 8M貼片晶振 A4950 直流電機驅動AO4805CAP CapacitorCAP SMD CapacitorCON2 ConnectorCON2*10 ConnectorCON2*12P ConnectorCON2*7 ConnectorCON2*9 ConnectorCON3 ConnectorCON4 ConnectorCON5 ConnectorCON7 ConnectorCap Pol 極性電解電容DIODE DiodeFUSE1 FuseFUSE2 FuseINDUCTOR2 IRF7351PbF N-MOSJS1-12V-FLED MAX487 MAX809RD R0.125 Less than 1/4 Watt Power Resistor.RES2 RGRPI*4 Res1 ResistorSGM8955XN5G/TR 測量放大器SM712 SN74LV4052AD SP3232ESST25VF016B-50-4I-S2AFI2C Real-Time Clock.STM32F107VTC6 STM32F107VTC6SW DIP-4 編碼開關SW-PB SwitchTPS54302 45UA靜態電流 3ATVS SMBJ30CAULN2003 XC6214XTAL Crystal OscillatorPCB封裝庫列表:Component Count : 40Component Name-----------------------------------------------4G模塊-外置7D181K0603-LED0603C0603R0805C12061210181232255569-2*1P直針5569-2*2P直針AT-26CAP-D8DO-214AANHSOP-8J-SPDT-5JTAGL