近距電能傳輸——高效安全近距電能傳輸一般基于電磁感應原理進行。在此技術基礎上,當接收器鄰近發射器時才會進行電能傳輸。電磁感應技術的歷史長達百年,多年米一直應用于各類電子產品中—如此普及全因其簡單、高效以及安全技術概覽以下將為你簡要介紹無線電能傳輸技術。System Overview(Communication)Receiver sends messagesTo provide control information to the transmitterBy load modulation on the power signaTransmitter receives messagesTo receive control information frorn the recelverBy de-modulation of the reflected loadPower Pick Up( Receiver)Secondary coil (L Serial resonance capacitor (C) for efficient power transfer Parallel resonance capacitor(C, )for detection purposes Rectifier: full bridge(diode, or switched)+ capacitor Output switch for(dis)connecting the loadReceiver modulates load by Switching modulation resistor(R,n),or Switching modulation capacitor(Ca)Transmitter de-modulates reflected load by Sensing pnmary coil curent (p)and/o Sensing primary coil voltage (V,
目的:自主研制一款超聲手術刀電源控制系統,以減少能量的消耗,維持手術刀的正常溫度。方法:對超聲換能器在諧振附近的等效電路建立模型,并設計基于數字信號處理(DSP)的超聲手術刀的硬件控制系統。結果:經對電源控制系統的電路和工作性能測試,生成的電流和電壓的有效值等參數,能夠及時調整電源的頻率,并達到預期的功能指標,使超聲手術刀工作在諧振狀態。結論:以DSP為核心設計的超聲手術刀電源控制系統,測試指標均能夠達到預期的要求,能夠使系統在諧振狀態下工作。Objective: To independently develop a power control system of ultrasonic scalpel so as to reduce the energy consumption and maintain the normal temperature of ultrasonic scalpel. Methods: In this paper, the model of equivalent circuit of ultrasonic transducer nearby syntony was built up, and the hardware control system of ultrasonic scalpel based on digital signal processing(DSP) was designed. Results: Through testing the circuit and work performance of power control system, the series of parameters such as effective value and so on which were produced by this system could adjust frequency of power source in time and attain anticipative functional indicator, and it took the ultrasonic scalpel to work in syntonic situation. Conclusion: The tested indicators of power control system of ultrasonic scalpel based on the kernel design of DSP can attain anticipative requirement, and can take this system to work in syntonic situation.
針對目前MSP430單片機實驗裝置較少、實驗內容少,而且無MSP430高端產品的實驗裝置,研制了基于MSP430F5529單片機的綜合實驗裝置,主要包括MSP430 Launch Pad和母板兩部分。較傳統的單片機實驗裝置增加了模擬電路的設置,設計的實驗能夠利用單片機的所有外設,可進行模塊基礎實驗和綜合實驗兩大類實驗,非常適合自動化和電氣信息類大學生學習使用。Concerning with the lack of experimental equipment and content based on MSP430,and especially,the experimental equipment of MSP430 senior products,an experimental equipment based on MSP430F5529 microcontroller is developed. It mainly consists of two parts: MSP430 Launch Pad and main board. Compared with traditional microcontroller experiment equipment,a few analog circuits were added. The experiment we set up takes advantage of all microcontroller peripherals. Students can do two kinds of experiments: module experiment and complex experiment.Therefore it fits university students in automation and electrical major very well.
意法半導體STM8系列參考手冊Program memory: 8 Kbyte Flash memory; dataretention 20 years at 55 °C after 100 cycles? RAM: 1 Kbyte? Data memory: 128 bytes true data EEPROM;endurance up to 100 k write/erase cycles
為解決移相全橋電路驅動及相角控制問題,設計了一種數字控制的移相全橋驅動電路.以TPL521為光耦隔離、IR2110為柵極驅動芯片.由DSP產生PWM信號,經過光耦隔離和邏輯電路后送至IR2110進行相角控制.文章對IR2110驅動電路原理進行分析及參數進行設計,對TMS320F28335進行設置并給出部分代碼.實驗結果表明:通過TMS320F28335可產生的不同相角的PWM波形,滿足了移相全橋對不同相角控制的要求.In order to solve the problem of phase-shifted full-bridge circuit driving and phase angle control,a digitally controlled phaseshifted full-bridge driving circuit was designed. TPL521 optocoupler isolation,IR2110 gate driver chip. PWM signals are generated by the DSP and sent to the IR2110 for phase angle control after optocoupler isolation and logic circuits. This text carries on the analysis to the principle of IR2110 drive circuit and parameter design,set up and give out some code to TMS320F28335. The experimental results show that the PWM waveforms with different phase angles generated by TMS320F28335 can meet the requirements of phase-shifted full-bridge control for different phase angles.
The JW? 7805 is a low noise low-dropout (LDO) voltage regulator with enable function that operates from 1.8V to 5.5V. It provides up to 300mA of output current and offers low-power operation in miniaturized packaging. JW7805 supports fixed output voltage 0.9V, 1.0V, 1.05V, 1.1V,1.2V, 1.3V, 1.35V, 1.5V, 1.8V, 1.85V, 2.1V, 2.2V, 2.3V, 2.5V, 2.6V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V,3.1V, 3.3V, 3.6V, 4.2V, 4.4V and 5.0V. The features of low quiescent current as low as 6uA and almost zero disable current are ideal for powering the battery equipment. JW7805’s low output noise and high PSRR are also friendly to RF systems.
以STM32F103C8T6為核心,設計了無刷直流電機控制器硬件電路。電路主要包括IR2310構成的PWM驅動電路、IRF3808構成的逆變電路、增量式旋轉編碼構成的速度反饋電路。控制器具有CAN和RS232通信接口,可與計算機或PLC構成速度或位置伺服系統。利用由xPC目標搭建的半實物仿真平臺對PI參數進行整定。測試了控制器的速度伺服響應性能,給定速度為2400rpm時,控制器響應時間為0.32s。實驗結果表明,系統工作可靠,穩定性好,響應速度快,可以滿足上肢康復機器人的機械臂速度控制性能要求。The hardware circuit of Brushless DC motor controller is designed by taking STM32F103C8T6 as the core,which mainly includes PWM driving circuits made up of IR2310,inverter circuit formed by IRF3808,speed feedback circuit composed of incremental rotary encoder and so on.Speed servo control system or position servo control system can be composed of BLDM controller with computer or PLC through CAN communication interface or RS232 serial communication interface.By using the hardware in the loop simulation platform built by xPC target,the PI parameters are set up.The Speed servo response performance of the controller is tested.When the speed is 2 400 rpm,the response time of the controller is 0...