This white paper discusses how market trends, the need for increased productivity, and new legislation have
accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is
changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to
market. This allows FPGA users to design their own customized safety controllers and provides a significant
competitive advantage over traditional microcontroller or ASIC-based designs.
Introduction
The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in
cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas
around machines such as fast-moving robots, and distributed control systems in process automation equipment such
as those used in petrochemical plants.
The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of
electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing
safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was
developed in the mid-1980s and has been revised several times to cover the technical advances in various industries.
In addition, derivative standards have been developed for specific markets and applications that prescribe the
particular requirements on functional safety systems in these industry applications. Example applications include
process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC
62304), automotive (ISO 26262), power generation, distribution, and transportation.
圖Figure 1. Local Safety System
Xilinx Next Generation 28 nm FPGA Technology Overview
Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.
本文簡單討論并總結了VHDL、Verilog,System verilog 這三中語言的各自特點和區別As the number of enhancements to variousHardware Description Languages (HDLs) hasincreased over the past year, so too has the complexityof determining which language is best fora particular design. Many designers and organizationsare contemplating whether they shouldswitch from one HDL to another.
The power of programmability gives industrial automation designers a highly efficient, cost-effective alternative to traditional motor control units (MCUs)。 The parallel-processing power, fast computational speeds, and connectivity versatility of Xilinx® FPGAs can accelerate the implementation of advanced motor control algorithms such as Field Oriented Control (FOC)。
Additionally, Xilinx devices lower costs with greater on-chip integration of system components and shorten latencies with high-performance digital signal processing (DSP) that can tackle compute-intensive functions such as PID Controller, Clark/Park transforms, and Space Vector PWM.
The Xilinx Spartan®-6 FPGA Motor Control Development Kit gives designers an ideal starting point for evaluating time-saving, proven, motor-control reference designs. The kit also shortens the process of developing custom control capabilities, with integrated peripheral functions (Ethernet, PowerLink, and PCI® Express), a motor-control FPGA mezzanine card (FMC) with built-in Texas Instruments motor drivers and high-precision Delta-Sigma modulators, and prototyping support for evaluating alternative front-end circuitry.