The PCA9538 is a 16-pin CMOS device that provides 8 bits of General Purpose parallelInput/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applicationsand was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders.I/O expanders provide a simple solution when additional I/O is needed for ACPI powerswitches, sensors, push-buttons, LEDs, fans, etc.
上傳時間: 2014-01-24
上傳用戶:youmo81
The PCA9539; PCA9539R is a 24-pin CMOS device that provides 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion with interrupt and reset forI2C-bus/SMBus applications and was developed to enhance the NXP Semiconductorsfamily of I2C-bus I/O expanders. I/O expanders provide a simple solution when additionalI/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.
上傳時間: 2013-11-10
上傳用戶:ewtrwrtwe
The PCA9549 provides eight bits of high speed TTL-compatible bus switching controlledby the I2C-bus. The low ON-state resistance of the switch allows connections to be madewith minimal propagation delay. Any individual A to B channel or combination of channelscan be selected via the I2C-bus, determined by the contents of the programmable Controlregister. When the I2C-bus bit is HIGH (logic 1), the switch is on and data can flow fromPort A to Port B, or vice versa. When the I2C-bus bit is LOW (logic 0), the switch is open,creating a high-impedance state between the two ports, which stops the data flow.An active LOW reset input (RESET) allows the PCA9549 to recover from a situationwhere the I2C-bus is stuck in a LOW state. Pulling the RESET pin LOW resets the I2C-busstate machine and causes all the bits to be open, as does the internal power-on resetfunction.
上傳時間: 2014-11-22
上傳用戶:xcy122677
The PCA9555 is a 24-pin CMOS device that provides 16 bits of General Purpose parallelInput/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed toenhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvementsinclude higher drive capability, 5 V I/O tolerance, lower supply current, individual I/Oconfiguration, and smaller packaging. I/O expanders provide a simple solution whenadditional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.The PCA9555 consists of two 8-bit Configuration (Input or Output selection); Input, Outputand Polarity Inversion (active HIGH or active LOW operation) registers. The systemmaster can enable the I/Os as either inputs or outputs by writing to the I/O configurationbits. The data for each Input or Output is kept in the corresponding Input or Outputregister. The polarity of the read register can be inverted with the Polarity Inversionregister. All registers can be read by the system master. Although pin-to-pin and I2C-busaddress compatible with the PCF8575, software changes are required due to theenhancements, and are discussed in Application Note AN469.
上傳時間: 2013-11-13
上傳用戶:fredguo
The PCA9548A is an octal bidirectional translating switch controlled via the I2C-bus. TheSCL/SDA upstream pair fans out to eight downstream pairs, or channels. Any individualSCx/SDx channel or combination of channels can be selected, determined by thecontents of the programmable control register.An active LOW reset input allows the PCA9548A to recover from a situation where one ofthe downstream I2C-buses is stuck in a LOW state. Pulling the RESET pin LOW resets theI2C-bus state machine and causes all the channels to be deselected as does the internalPower-on reset function.
上傳時間: 2013-10-13
上傳用戶:bakdesec
The PCA9557 is a silicon CMOS circuit which provides parallel input/output expansion for SMBus and I2C-bus applications. The PCA9557 consists of an 8-bit input port register, 8-bit output port register, and an I2C-bus/SMBus interface. It has low current consumption and a high-impedance open-drain output pin, IO0. The system master can enable the PCA9557’s I/O as either input or output by writing to the configuration register. The system master can also invert the PCA9557 inputs by writing to the active HIGH polarity inversion register. Finally, the system master can reset the PCA9557 in the event of a time-out by asserting a LOW in the reset input. The power-on reset puts the registers in their default state and initializes the I2C-bus/SMBus state machine. The RESET pin causes the same reset/initialization to occur without de-powering the part.
上傳時間: 2014-01-18
上傳用戶:bs2005
Although Stellaris microcontrollers have generous internal SRAM capabilities, certain applicationsmay have data storage requirements that exceed the 8 KB limit of the Stellaris LM3S8xx seriesdevices. Since microcontrollers do not have an external parallel data-bus, serial memory optionsmust be considered. Until recently, the ubiquitous serial EEPROM/flash device was the only serialmemory solution. The major limitations of EEPROM and flash technology are slow write speed, slowerase times, and limited write/erase endurance.Recently, serial SRAM devices have become available as a solution for high-speed dataapplications. The N256S08xxHDA series of devices, from AMI Semiconductor, offer 32 K x 8 bits oflow-power data storage, a fast Serial Peripheral Interface (SPI) serial bus, and unlimited write cycles.The parts are available in 8-pin SOIC and compact TSSOP packages.
上傳時間: 2013-10-14
上傳用戶:cxl274287265
基于PIC單片機的低功耗讀卡器硬件設計:本文提出了一個完整的基于串口的智能讀卡器子系統設計方案并將其實現。讀卡器的設計突出了小型化的要求,全部器件使用貼片封裝。為了減小讀卡器的體積,設計中還使用了串口竊電的技術,使用串口信號線直接給讀卡器供電。為此,讀卡器使用了省電的設計,采用了省電的集成電路,并大膽簡化了許多傳統的設計電路。關鍵字: 讀卡器, 單片機, 串口竊電 Abstract: This paper aims to put forward a complete design of Smart IC card reader based onSerial Port and propose the way of realizing it for the purpose of Network Security. SMD isadopted to make Smart IC reader smaller in this design. To reduce the volume of Smart ICreader, Serial Port powered technology is employed to get power from the signal line of Serial Port. For this reason, low-power consumption components are adopted in the design and some traditional designs are simplified to reduce the power consumption.Keywords: Card Reader; Single-chip Computer; Serial Port Powered IC 卡系統保存了加密算法所需要的工作密鑰,供加密算法對網絡上傳輸的數據加密使用,是整個系統網絡安全的核心。在IC 卡子系統中,讀卡器是一個重要的部分。它起著管理IC卡、在IC 卡和PC或網絡計算機間傳遞數據的重要作用。本文以一片PIC單片機為核心完成了基于RS232 串口的讀卡器的硬件設計。
上傳時間: 2014-04-14
上傳用戶:wanghui2438
介紹用PIC16F84單片機制作的電子密碼鎖。PIC16F84單片機共18個引腳,13個可用I/O接口。芯片內有1K×14的FLASHROM程序存儲器,36×8的靜態RAM的通用寄存器,64×8的EEPROM的數據存儲器,8級深度的硬堆棧。 用PIC單片機設計的電子密碼鎖微芯公司生產的PIC8位COMS單片機,采用類RISC指令集和哈弗總線結構,以及先進的流水線時序,與傳統51單片機相比其在速度和性能方面更具優越性和先進性。PIC單片機的另一個優點是片上硬件資源豐富,集成常見的EPROM、DAC、PWM以及看門狗電路。這使得硬件電路的設計更加簡單,節約設計成本,提高整機性能。因此PIC單片機已成為產品開發,尤其是產品設計和研制階段的首選控制器。本文介紹用PIC16F84單片機制作的電子密碼鎖。PIC16F84單片機共18個引腳,13個可用I/O接口。芯片內有1K×14的FLASHROM程序存儲器,36×8的靜態RAM的通用寄存器,64×8的EEPROM的數據存儲器,8級深度的硬堆棧。硬件設計 電路原理見圖1。Xx8位數據線接4x4鍵盤矩陣電路,面板布局見表1,A、B、C、D為備用功能鍵。RA0、RA7輸出4組編碼二進制數據,經74LS139譯碼后輸出逐行掃描信號,送RB4-RB7列信號輸入端。余下半個139譯碼器動揚聲器。RB2接中功率三極管基極,驅動繼電器動作。有效密碼長度為4位,根據實際情況,可通過修改源程序增加密碼位數。產品初始密碼為3345,這是一隨機數,無特殊意義,目的是為防止被套解。用戶可按*號鍵修改密碼,按#號鍵結束。輸入密碼并按#號確認之后,腳輸出RB2腳輸出高電平,繼電器閉合,執行一次開鎖動作。 若用戶輸入的密碼正確,揚聲器發出一聲稍長的“滴”提示聲,若輸入的密碼與上次修改的不符,則發出短促的“滴”聲。連續3次輸入密碼錯誤之后,程序鎖死,揚聲器報警。直到CPU被復位或從新上電。軟件設計 軟件流程圖見圖3。CPU上電或復位之后將最近一次修改并保存到EEPROM的密碼讀出,最為參照密匙。然后等待用戶輸入開鎖密碼。若5分鐘以內沒有接受到用戶的任何輸入,CPU自動轉入掉電模式,用戶輸入任意值可喚醒CPU。每次修改密碼之后,CPU將新的密碼存入內部4個連續的EEPROM單元,掉電后該數據任有效。每執行一次開鎖指令,CPU將當前輸入密碼與該值比較,看是否真確,并給出相應的提示和控制。布 局 所有元件均使用SMD表貼封裝,縮小體積,便于產品安裝,60X60雙面PCB板,頂層是一體化輸入鍵盤,底層是元件層。成型后的產品體積小巧,能很方便的嵌入防盜鐵門、保險箱柜。
上傳時間: 2013-10-31
上傳用戶:uuuuuuu
The C500 microcontroller family usually provides only one on-chip synchronous serialchannel (SSC). If a second SSC is required, an emulation of the missing interface mayhelp to avoid an external hardware solution with additional electronic components.The solution presented in this paper and in the attached source files emulates the mostimportant SSC functions by using optimized SW routines with a performance up to 25KBaud in Slave Mode with half duplex transmission and an overhead less than 60% atSAB C513 with 12 MHz. Due to the implementation in C this performance is not the limitof the chip. A pure implementation in assembler will result in a strong reduction of theCPU load and therefore increase the maximum speed of the interface. In addition,microcontrollers like the SAB C505 will speed up the interface by a factor of two becauseof an optimized architecture compared with the SAB C513.Moreover, this solution lays stress on using as few on-chip hardware resources aspossible. A more excessive consumption of those resources will result in a highermaximum speed of the emulated interface.Due to the restricted performance of an 8 bit microcontroller a pin compatible solution isprovided only; the internal register based programming interface is replaced by a set ofsubroutine calls.The attached source files also contain a test shell, which demonstrates how to exchangeinformation between an on-chip HW-SSC and the emulated SW-SSC via 5 external wiresin different operation modes. It is based on the SAB C513 (Siemens 8 bit microcontroller).A table with load measurements is presented to give an indication for the fraction of CPUperformance required by software for emulating the SSC.
標簽: synchronous Emulating serial
上傳時間: 2014-01-31
上傳用戶:z1191176801