Providing power for the Pentium® microprocessor family isnot a trivial task by any means. In an effort to simplify thistask we have developed a new switching regulator controlcircuit and a new linear regulator to address the needs ofthese processors. Considerable time has been spent developingan optimized decoupling network. Here are severalcircuits using the new LTC®1266 synchronous buck regulatorcontrol chip and the LT®1584 linear regulator toprovide power for Pentium processors and Pentium VREprocessors. The Pentium processor has a supply requirementof 3.3V ±5%. The Pentium VRE processor requires3.500V ±100mV.
Linear Technology has a sabbatical program. Every fiveyears employees are granted sabbatical leave, which maylast up to six weeks. You have 18 months from each fiveyear employment anniversary to take the leave. Sabbaticalis fully company paid and has no restrictions. The time isyours to do with as you please.
For a variety of reasons, it is desirable to charge batteriesas rapidly as possible. At the same time, overchargingmust be limited to prolong battery life. Such limitation ofovercharging depends on factors such as the choice ofcharge termination technique and the use of multi-rate/multi-stage charging schemes. The majority of batterycharger ICs available today lock the user into one fixedcharging regimen, with at best a limited number ofcustomization options to suit a variety of application needsor battery types. The LTC®1325 addresses these shortcomingsby providing the user with all the functionalblocks needed to implement a simple but highly flexiblebattery charger (see Figure 1) which not only addressesthe issue of charging batteries but also those of batteryconditioning and capacity monitoring.
為了改變目前電網現場作業管理的變電巡檢、變電檢修試驗、輸電線路巡檢檢修等管理系統各自獨立運行,信息不能共享,功能、效率受限,建設和維護成本高的現狀,提出了采用B/S+C/S構架模式,將各現場作業管理模塊和生產MIS(管理系統)集成為一體的現場作業管理系統的設計方案,做到各子系統和生產MIS軟硬資源共享,做到同一數據唯一入口、一處錄入多處使用。各子系統設備人員等基礎信息來源于生產管理系統,各子系統又是生產管理系統的作業數據、缺陷信息的重要來源。經過研究試用成功和推廣應用,目前該系統已在江西電網220 kV及以上變電站全面應用。
Abstract:
In order to improve the status that the substation field inspection system, substation equipments maintenance and testing system, power-line inspection and maintenance system are running independent with each other. They can?蒺t share the resource information which accordingly constrains their functions and efficiency, and their construction and maintenance costs are high. This paper introduces a field standardized work management system based on B/S+C/S mode, integrating all field work management systems based on MIS and share the equipments and employee?蒺s data of MIS,the field work data of the sub systems are the source information of MIS, by which the same single data resouce with one-time input can be utilized in multiple places. After the research and testing, this system is triumphantly using in all 220kV and above substations in Jiangxi grid.
Demonstration circuit 1562A is an engineering toolto design and evaluate the LTC699X-X family ofTimerBlox circuits. The center section of the boardcontains a pre-configured TimerBlox function.DC1562A comes in twelve timing function variationsas outlined in Table 1.Surrounding the center board is a ”playground”prototyping area. The prototyping area has padsfor Dip-8, S8, MS8, or S6 packages with breadboarding connections to each pin and two convenientpower buses and ground bus surrounding theentire area. This area is for conditioning signals tocontrol the timer function and for adding loads controlled in time.
HIGH SPEED 8051 μC CORE
- Pipe-lined Instruction Architecture; Executes 70% of Instructions in 1 or 2
System Clocks
- Up to 25MIPS Throughput with 25MHz System Clock
- 22 Vectored Interrupt Sources
MEMORY
- 4352 Bytes Internal Data RAM (256 + 4k)
- 64k Bytes In-System Programmable FLASH Program Memory
- External Parallel Data Memory Interface – up to 5Mbytes/sec
DIGITAL PERIPHERALS
- 64 Port I/O; All are 5V tolerant
- Hardware SMBusTM (I2CTM Compatible), SPITM, and Two UART Serial
Ports Available Concurrently
- Programmable 16-bit Counter/Timer Array with 5 Capture/Compare
Modules
- 5 General Purpose 16-bit Counter/Timers
- Dedicated Watch-Dog Timer; Bi-directional Reset
CLOCK SOURCES
- Internal Programmable Oscillator: 2-to-16MHz
- External Oscillator: Crystal, RC, C, or Clock
- Real-Time Clock Mode using Timer 3 or PCA
SUPPLY VOLTAGE ........................ 2.7V to 3.6V
- Typical Operating Current: 10mA @ 25MHz
- Multiple Power Saving Sleep and Shutdown Modes
100-Pin TQFP (64-Pin Version Available)
Temperature Range: –40°C to +85°C
The MAX9257/MAX9258 programmable serializer/deserializer (SerDes) devices transfer both video data and control signals over the same twisted-pair cable. However, control data can only be transmitted during the vertical blank time, which is indicated by the control-channel-enabled output (CCEN) signal. The electronic control unit (ECU) firmware designer needs to know how quickly to respond to the CCEN signal before it times out and how to calculate this duration. This application note describes how to calculate the duration of the CCEN for the MAX9257/MAX9258 SerDes chipset. The calculation is based on STO timeout, clock frequency, and UART bit timing. The CCEN duration is programmable and can be closed if not in use.
針對科研實驗中對拉壓千斤頂加載過程控制的需要,采用ATmega128單片機控制步進電機進而實現對執行系統的電動泵站實行自動控制。對力和位移的數據采集與處理及用步進電機控制電動泵站手柄的技術細節作了重點描述。通過單片機的A/D變換器對AMP放大模塊采集的電橋信號作量化處理,千斤頂的操控手柄位置依電動油泵閥門開啟的方向和大小作若干定位,單片機根據力或位移傳感器信號,實時控制步進電機驅動手柄旋轉到相應操控位置。
Abstract:
This article describes the use of ATmega128 AVR microcontroller series of DBS electric pumping stations and QF100/200 separate twoway hydraulic jack to automate the process of manipulating the work of the technical content. Articles on force and displacement data acquisition and processing, and stepper motor control electric pump with the handle of the key technical details were described. Through the MCU’s A / D converter module is collected on the AMP amplification quantify the signal bridge, jack handle position control valve opening according to the direction of electric pumps for a number of positioning and size of the microcontroller based on force or displacement sensor signals, real-time control stepper motor drive control handle rotate to the appropriate location.
為了提高傳統溫度控制系統的性能,將PID控制理論與嵌入式系統相結合,采用瑞薩電子公司的H8S/2166作為核心處理器,AD公司的AD7705以及熱敏電阻溫度傳感器作為溫度檢測單元,利用4×6小鍵盤、LCD顯示器和S1D13305液晶控制器達到良好的人機交互,設計出了一個應用于化工領域的嵌入式實時溫度控制系統。相比于傳統溫度控制系統,該系統提供了更強的計算能力和可擴展能力,采用增量PID控制算法實現復雜控制。通過實驗,該系統能達到0.1 ℃的溫度控制精度以及小于120 s的溫度穩定時間。
Abstract:
In order to improve the performance of conventional temperature control system, combining PID control theory with embedded systems, using the Renesas Electronics Corp. H8S/2166 micro-controller as a core processors, AD7705 and thermistor temperature sensor as a temperature detection unit and 4×6 small keyboard, LCD and S1D13305 LCD controller as a good human-computer interaction, this paper designed an embedded real-time temperature control system which is applied in chemical industry. Compared with conventional temperature control system, this system provides more computing power and extensibility, and adopts PID control algorithm for complex control. Through the experiment, the system can reach temperature control accuracy of 0.1 ℃ and temperature stabilization time of less than 120 seconds.