Abstract: Class D amplifiers are typically very efficient, making them ideal candidates for portable applications that require longbattery life and low thermal dissipation. However, electromagnetic interference (EMI) is an issue that commonly accompanies theClass D switching topology. Active-emissions limiting reduces radiated emissions and enables "filterless" operation, allowingdesigners to create small, efficient portable applications with low EMI.
Recent advances in low voltage silicon germaniumand BiCMOS processes have allowed the design andproduction of very high speed amplifi ers. Because theprocesses are low voltage, most of the amplifi er designshave incorporated differential inputs and outputs to regainand maximize total output signal swing. Since many lowvoltageapplications are single-ended, the questions arise,“How can I use a differential I/O amplifi er in a single-endedapplication?” and “What are the implications of suchuse?” This Design Note addresses some of the practicalimplications and demonstrates specifi c single-endedapplications using the 3GHz gain-bandwidth LTC6406differential I/O amplifi er.