隨著人們對于高速無線數(shù)據(jù)業(yè)務(wù)的急切需求以及新的無線通信技術(shù)的發(fā)展,頻譜資源匱乏問題日益嚴(yán)重。無線頻譜的緊缺已經(jīng)成為限制無線通信與服務(wù)應(yīng)用持續(xù)發(fā)展的瓶頸。認(rèn)知無線電技術(shù)(Cognitive Radio)改變了傳統(tǒng)的固定頻譜分配方式,它以頻譜利用的高效性為目標(biāo),允許非授權(quán)用戶擇機(jī)利用授權(quán)用戶的頻譜空洞傳輸數(shù)據(jù),以此來解決無線頻譜資源短缺的問題。它是具有自主尋找和使用空閑頻譜資源能力的智能無線電技術(shù)。本文的目標(biāo)是在基于FPGA+DSP的系統(tǒng)硬件平臺上,以軟件編程的方式實(shí)現(xiàn)認(rèn)知無線電數(shù)據(jù)傳輸?shù)墓δ堋?軟件無線電是實(shí)現(xiàn)認(rèn)知無線電的理想平臺。本文首先闡述了軟件無線電的基本工作原理及關(guān)鍵技術(shù)途徑,對多速率信號處理中的內(nèi)插和抽取、帶通采樣、數(shù)字下變頻、濾波等技術(shù)進(jìn)行了分析與探討,為設(shè)計多速率調(diào)制解調(diào)系統(tǒng)提供了理論基礎(chǔ)。然后針對軟件無線電的要求給出了基于FPFA+DSP的系統(tǒng)設(shè)計硬件框圖,并對其中的部分硬件(FPGA、AD9857、AD9235)做了簡要的描述并給出其初始化過程。在理解基本概念和原理的基礎(chǔ)上,詳細(xì)論述了在系統(tǒng)硬件設(shè)計平臺上實(shí)現(xiàn)的π/4-DQPSK、8PSK、16QAM調(diào)制解調(diào)技術(shù)。本文給出了調(diào)制解調(diào)系統(tǒng)實(shí)現(xiàn)方案中的各個功能模塊(差分編、解碼,加同步頭、內(nèi)插和成形濾波,下變頻,系統(tǒng)同步等)具體的設(shè)計方案和通過硬件編程實(shí)現(xiàn)了板級的仿真和最后的硬件實(shí)現(xiàn),并對其中得到的數(shù)據(jù)進(jìn)行分析,進(jìn)一步驗(yàn)證方案的可行性。最后介紹了通信板同頻譜感知板協(xié)同工作原理,依據(jù)頻譜感知板獲取的各個信道狀況自適應(yīng)的選擇π/4-DQPSK、8PSK、16QAM調(diào)制解調(diào)方式并在FPGA上實(shí)現(xiàn)了其中部分功能。
標(biāo)簽: FPGA 多速率 調(diào)制解調(diào)器
上傳時間: 2013-05-30
上傳用戶:fywz
無線局域網(wǎng)(WLAN)是未來移動通信系統(tǒng)的重要組成部分。由于擺脫了有線連接的束縛,無線局域網(wǎng)具有移動性好、成本低以及網(wǎng)絡(luò)傳輸故障少等諸多優(yōu)點(diǎn),得到了越來越廣泛的發(fā)展與應(yīng)用。正交頻分復(fù)用(OFDM)技術(shù)具有抗多徑衰落,頻譜利用率高等優(yōu)點(diǎn),特別適合于無線環(huán)境下的高速數(shù)據(jù)傳輸,是高速無線局域網(wǎng)的首選技術(shù)之一。從IEEE802.11a,IEEE802.11g到IEEE802.1n都是以O(shè)FDM為基礎(chǔ)。隨著OFDM技術(shù)的普及以及下一代通信技術(shù)對OFDM的青睞,研究與實(shí)現(xiàn)應(yīng)用于無線局域網(wǎng)的OFDM關(guān)鍵技術(shù)具有一定的意義。 本文首先介紹了WLAN的基本概念及相關(guān)協(xié)議標(biāo)準(zhǔn)和OFDM系統(tǒng)的工作原理,并描述了基于IEEE802,11a和IEEE802.11n標(biāo)準(zhǔn)的OFDM系統(tǒng)的數(shù)據(jù)幀結(jié)構(gòu)以及系統(tǒng)參數(shù)。文中對OFDM傳輸系統(tǒng)的關(guān)鍵算法進(jìn)行了詳細(xì)的研究。然后以Xilinx公司的ISE10.1為軟件平臺,利用VHDL描述的方式,并以FPGA(現(xiàn)場可編程門陣列)芯片SPARTAN-3E為硬件平臺,研究實(shí)現(xiàn)了適用于IEEE802.11a和IEEE802.11n的64點(diǎn)16bits復(fù)數(shù)塊浮點(diǎn)結(jié)構(gòu)的FFT模塊,(2,1,7)卷積編碼和維特比譯碼模塊,以及分組檢測和符號定時模塊,并進(jìn)行了仿真、綜合、下載驗(yàn)證等工作。
標(biāo)簽: OFDM FPGA 無線局域網(wǎng)
上傳時間: 2013-06-25
上傳用戶:cee16
51單片機(jī)匯編常用的一些移值性較好的程式
上傳時間: 2013-06-20
上傳用戶:
對弓網(wǎng)故障的檢測是當(dāng)今列車檢測的一項(xiàng)重要任務(wù)。原始故障視頻圖像具有極大的數(shù)據(jù)量,使實(shí)時存儲和傳輸故障視頻圖像極其困難。由于視頻的數(shù)據(jù)量相當(dāng)大,需要采用先進(jìn)的視頻編解碼協(xié)議進(jìn)行處理,進(jìn)而實(shí)現(xiàn)檢測現(xiàn)場的實(shí)時監(jiān)控。 @@ H.264/AVC(Advanced Video Coding)作為MPEG-4的第10部分,因其具有超高的壓縮效率、極好的網(wǎng)絡(luò)親和性,而被廣泛研究與應(yīng)用。H.264/AVC采用了先進(jìn)的算法,主要有整數(shù)變換、1/4像素精度插值、多模式幀間預(yù)測、抗塊效應(yīng)濾波器和熵編碼等。 @@ 本文使用硬件描述語言Verilog,以紅色颶風(fēng) II開發(fā)板作為硬件平臺,在開發(fā)工具QUARTUSII 6.0和MODELSIM_SE 6.1B環(huán)境中完成軟核的設(shè)計與仿真驗(yàn)證。以Altera公司的CycloneII FPGA(Field Programmable Gate Array)EP2C35F484C8作為核心芯片,實(shí)現(xiàn)視頻圖像采集、存儲、顯示以及實(shí)現(xiàn)H.264/AVC部分算法的基本系統(tǒng)。 @@ FPGA以其設(shè)計靈活、高速、具有豐富的布線資源等特性,逐漸成為許多系統(tǒng)設(shè)計的首選,尤其是與Verilog和VHDL等語言的結(jié)合,大大變革了電子系統(tǒng)的設(shè)計方法,加速了系統(tǒng)的設(shè)計進(jìn)程。 @@ 本文首先分析了FPGA的特點(diǎn)、設(shè)計流程、verilog語言等,然后對靜態(tài)圖像及視頻圖像的編解碼進(jìn)行詳細(xì)的分析,比如H.264/AVC中的變換、量化、熵編碼等:并以JM10.2為平臺,運(yùn)用H.264/AVC算法對視頻序列進(jìn)行大量的實(shí)驗(yàn),對不同分辨率、量化步長、視頻序列進(jìn)行編解碼以及對結(jié)果進(jìn)行分析。接著以紅色颶風(fēng)II開發(fā)板為平臺,進(jìn)行視頻圖像的采集存儲、顯示分析,其中詳細(xì)分析了SAA7113的配置、CCD信號的A/D轉(zhuǎn)換、I2C總線、視頻的數(shù)字化ITU-R BT.601標(biāo)準(zhǔn)介紹及視頻同步信號的獲取、基于SDRAM的視頻幀存儲、VGA顯示控制設(shè)計;最后運(yùn)用verilog語言實(shí)現(xiàn)H.264/AVC部分算法,并進(jìn)行功能仿真,得到預(yù)計的效果。 @@ 本文實(shí)現(xiàn)了整個視頻信號的采集存儲、顯示流程,詳細(xì)研究了H.264/AVC算法,并運(yùn)用硬件語言實(shí)現(xiàn)了部分算法,對視頻編解碼芯片的設(shè)計具有一定的參考價值。 @@關(guān)鍵詞:FPGA;H.264/AVC;視頻;verilog;編解碼
上傳時間: 2013-04-24
上傳用戶:啦啦啦啦啦啦啦
隨著電力電子技術(shù)、微處理器技術(shù)、控制理論及永磁材料等技術(shù)的快速發(fā)展,以永磁同步電機(jī)作為控制對象的傳動領(lǐng)域得到了越來越廣泛的關(guān)注,隨著FPGA的技術(shù)的普及和廣泛應(yīng)用,使得各種先進(jìn)的控制算法得以實(shí)現(xiàn),于是數(shù)字化、智能化的永磁交流控制器成為必然的發(fā)展趨勢和當(dāng)前的研究熱點(diǎn)。本文的主要工作就是圍繞數(shù)字化的永磁同步電機(jī)控制器研究來展開。首先深入研究了永磁同步電機(jī)的數(shù)學(xué)建模方法及電機(jī)控制策略問題。在對永磁同步電機(jī)的數(shù)學(xué)模型進(jìn)行了推導(dǎo)的基礎(chǔ)上,在PSIM仿真軟件中建立了永磁同步電機(jī)的電機(jī)模型,提出了一種永磁同步電機(jī)傳統(tǒng)控制系統(tǒng)仿真建模的新方法。其次對常用的數(shù)字脈寬調(diào)制方法進(jìn)行了數(shù)學(xué)推導(dǎo),并對滑模控制理論和矢量控制進(jìn)行了深入的研究分析,將滑模變結(jié)構(gòu)控制應(yīng)用于永磁同步電機(jī)的調(diào)速系統(tǒng)中,改善了傳統(tǒng)PI控制器參數(shù)整定繁瑣、系統(tǒng)魯棒性差的缺點(diǎn),仿真結(jié)果驗(yàn)證了該系統(tǒng)設(shè)計方案的優(yōu)越性。最后在永磁同步電機(jī)建模仿真的基礎(chǔ)上,根據(jù)永磁同步電機(jī)控制器的設(shè)計要求及FPGA的特點(diǎn),提出永磁同步電機(jī)控制器的的設(shè)計方案。按照FPGA模塊化設(shè)計思想,將整個系統(tǒng)進(jìn)行了合理的劃分,分別對SVPWM、Park變換、SMC、反饋速度測量等重要模塊的FPGA硬件實(shí)現(xiàn)算法進(jìn)行了深入的研究。各模塊在Modelsim平臺上完成功能仿真后并下載到Spartan-3E開發(fā)板上完成硬件驗(yàn)證,驗(yàn)證結(jié)果表明:永磁同步電機(jī)在低速和高速時都能穩(wěn)定運(yùn)行,從而證實(shí)了本設(shè)計方案的可行性。
上傳時間: 2013-04-24
上傳用戶:wff
雷達(dá)截獲接收機(jī)、反輻射導(dǎo)彈等電子設(shè)備的使用對軍用雷達(dá)的生存構(gòu)成了嚴(yán)重威脅。因此,雷達(dá)必須避免被敵方電子設(shè)備截獲和干擾。這種形式下噪聲雷達(dá)應(yīng)運(yùn)而生,其中一種很成熟的便是噪聲調(diào)頻雷達(dá)。上世紀(jì)八十年代,我們課題組成功研制了噪聲調(diào)頻雷達(dá)原理樣機(jī)。雖然該雷達(dá)具有十分優(yōu)異的LPI性能,但是限于當(dāng)時的電子技術(shù)水平,該雷達(dá)采用模擬器件實(shí)現(xiàn),使得雷達(dá)的體積較大、工作穩(wěn)定性受外界環(huán)境影響大,在小型化、高精度的應(yīng)用領(lǐng)域受到諸多限制。FPGA是上世紀(jì)八十年代發(fā)展起來的數(shù)字技術(shù),具有體積小、精度高、穩(wěn)定性好和速度快等特點(diǎn)。 本文在噪聲雷達(dá)課題組研究的基礎(chǔ)上,設(shè)計實(shí)現(xiàn)噪聲調(diào)頻雷達(dá)信號處理系統(tǒng)。內(nèi)容安排如下:第一章介紹噪聲雷達(dá)的研究背景和發(fā)展前景;第二章介紹噪聲調(diào)頻雷達(dá)的原理,證明混頻器輸出信號各態(tài)歷經(jīng)性;第三章介紹FPGA開發(fā)軟硬件環(huán)境;第四章詳細(xì)闡述基于FPGA技術(shù)的噪聲調(diào)頻雷達(dá)信號處理系統(tǒng)設(shè)計和系統(tǒng)中關(guān)鍵模塊的設(shè)計實(shí)現(xiàn);第五章對設(shè)計的FPGA信號處理系統(tǒng)進(jìn)行仿真和驗(yàn)證。最后,第六章對全文進(jìn)行總結(jié),指出了設(shè)計中的不足和須改進(jìn)的地方。
標(biāo)簽: FPGA 噪聲調(diào)頻 雷達(dá)信號
上傳時間: 2013-05-21
上傳用戶:天涯
現(xiàn)代社會對各種無線通信業(yè)務(wù)的需求迅猛增長,這就要求無線通信在具有較高傳輸質(zhì)量的同時,還必須具有較大的傳輸容量。這種需求要求在無線通信中必須采用效率較高的線性調(diào)制方式,以提高有限頻帶帶寬的數(shù)據(jù)速率和頻譜利用率,而效率較高的調(diào)制方式通常會對發(fā)端發(fā)射機(jī)的線性要求較高,這就使功率放大器線性化技術(shù)成為下一代無線通信系統(tǒng)的關(guān)鍵技術(shù)之一。 在本文中,研究了前人所提出的各種功放線性化技術(shù),如功率回退法、正負(fù)反饋法、預(yù)失真和非線性器件法等等,針對功率放大器對信號的失真放大問題進(jìn)行研究,對比和研究了目前廣泛流行的自適應(yīng)數(shù)字預(yù)失真算法。在一般的自適應(yīng)數(shù)字預(yù)失真算法中,主要有兩類:無記憶非線性預(yù)失真和有記憶非線性預(yù)失真。無記憶非線性預(yù)失真主要是通過比較功率放大器的反饋信號和已知輸入信號的幅度和相位的誤差來估計預(yù)失真器的各種修正參數(shù)。而有記憶非線性預(yù)失真主要是綜合考慮功率放大器非線性和記憶性對信號的污染,需要同時分析信號的當(dāng)前狀態(tài)和歷史狀態(tài)。在對比完兩種數(shù)字預(yù)失真算法之后,文章著重分析了有記憶預(yù)失真算法,選擇了其中的多項(xiàng)式預(yù)失真算法進(jìn)行了具體分析推演,并通過軟件無線電的方法將數(shù)字信號處理與FPGA結(jié)合起來,在內(nèi)嵌了System Generator軟件的Matlab/Simulink上對該算法進(jìn)行仿真分析,證明了這個算法的性能和有效性。 本文另外一個最重要的創(chuàng)新點(diǎn)在于,在FPGA設(shè)計上,使用了系統(tǒng)級設(shè)計的思路,與Xilinx公司提供的軟件能夠很好的配合,在完成仿真后能夠直接將代碼轉(zhuǎn)換成FPGA的網(wǎng)表文件或者硬件描述語言,大大簡化了開發(fā)過程,縮短了系統(tǒng)的開發(fā)周期。
上傳時間: 2013-06-20
上傳用戶:handless
LDPC(Low Density Parity Check)碼是一類可以用非常稀疏的校驗(yàn)矩陣或二分圖定義的線性分組糾錯碼,最初由Gallager發(fā)現(xiàn),故亦稱Gallager碼.它和著名Turbo碼相似,具有逼近香農(nóng)限的性能,幾乎適用于所有信道,因此成為近年來信道編碼界研究的熱點(diǎn)。 LDPC碼的奇偶校驗(yàn)矩陣呈現(xiàn)稀疏性,其譯碼復(fù)雜度與碼長成線性關(guān)系,克服了分組碼在長碼長時所面臨的巨大譯碼計算復(fù)雜度問題,使長編碼分組的應(yīng)用成為可能。而且由于校驗(yàn)矩陣的稀疏特性,在長的編碼分組時,相距很遠(yuǎn)的信息比特參與統(tǒng)一校驗(yàn),這使得連續(xù)的突發(fā)差錯對譯碼的影響不大,編碼本身就具有抗突發(fā)差錯的特性。 本文首先介紹了LDPC碼的基本概念和基本原理,其次,具體介紹了LDPC碼的構(gòu)造和各種編碼算法及其生成矩陣的產(chǎn)生方法,特別是準(zhǔn)循環(huán)LDPC碼的構(gòu)造以及RU算法、貪婪算法,并在此基礎(chǔ)上采用貪婪算法對RU算法進(jìn)行了改進(jìn)。 最后,選用Altera公司的Stratix系列FPGA器件EPls25F67217,實(shí)現(xiàn)了碼長為504的基于RU算法的LDPC編碼器。在設(shè)計過程中,為節(jié)省資源、提高速度,在向量存儲時采用稀疏矩陣技術(shù),在向量相加時采用通過奇校驗(yàn)直接判定結(jié)果的方法,在向量乘法中,采用了前向迭代方法,避開了復(fù)雜的矩陣求逆運(yùn)算。結(jié)果表明,該編碼器只占用約10%的邏輯單元,約5%的存儲單元,時鐘頻率達(dá)到120MHz,數(shù)據(jù)吞吐率達(dá)到33Mb/s,功能上也滿足編碼器的要求。
上傳時間: 2013-06-09
上傳用戶:66wji
波前處理機(jī)是自適應(yīng)光學(xué)系統(tǒng)中實(shí)時信號處理和運(yùn)算的核心,隨著自適應(yīng)光學(xué)系統(tǒng)得發(fā)展,波前傳感器的采樣頻率越來越高,這就要求波前處理機(jī)必須有更強(qiáng)的數(shù)據(jù)處理能力以保證系統(tǒng)的實(shí)時性。在整個波前處理機(jī)的工作流程中,對CCD傳來的實(shí)時圖像數(shù)據(jù)進(jìn)行實(shí)時處理是第一步,也是十分重要的一步。如果不能保證圖像處理的實(shí)時性,那么后續(xù)的處理過程都無從談起。因此,研制高性能的圖像處理平臺,對波前處理機(jī)性能的提高具有十分重要的意義。 論文介紹了本研究課題的背景以及國內(nèi)外圖像處理技術(shù)的應(yīng)用和發(fā)展?fàn)顩r,接著介紹了傳統(tǒng)的專用和通用圖像處理系統(tǒng)的結(jié)構(gòu)、特點(diǎn)和模型,并通過分析DSP芯片以及DSP系統(tǒng)的特點(diǎn),提出了基于DSP和FPGA芯片的實(shí)時圖像處理系統(tǒng)。該系統(tǒng)不同于傳統(tǒng)基于PC機(jī)模式的圖像處理系統(tǒng),發(fā)揮了DSP和FPGA兩者的優(yōu)勢,能更好地提高圖像處理系統(tǒng)實(shí)時性能,同時也最大可能地降低成本。 論文根據(jù)圖像處理系統(tǒng)的設(shè)計目的、應(yīng)用需求確定了器件的選型。介紹了主要的器件,接著從系統(tǒng)架構(gòu)、邏輯結(jié)構(gòu)、硬件各功能模塊組成等方面詳細(xì)介紹了DSP+FPGA圖像處理系統(tǒng)硬件設(shè)計,并分析了包括各種參數(shù)指標(biāo)選擇、連接方式在內(nèi)的具體設(shè)計方法以及應(yīng)該注意的問題。 論文在闡述傳輸線理論的基礎(chǔ)上,在制作PCB電路板的過程中,針對高速電路設(shè)計中易出現(xiàn)的問題,詳細(xì)分析了高速PCB設(shè)計中的信號完整性問題,包括反射、串?dāng)_等,說明了高速PCB的信號完整性、電源完整性和電磁兼容性問題及其解決方法,進(jìn)行了一定的理論和技術(shù)探討和研究。 論文還介紹了基于FPGA的邏輯設(shè)計,包括了圖像采集模塊的工作原理、設(shè)計方案和SDRAM控制器的設(shè)計,介紹了SDRAM的基本操作和工作時序,重點(diǎn)闡述系統(tǒng)中可編程器件內(nèi)部模塊化SDRAM控制器的設(shè)計及仿真結(jié)果。 論文最后描述了硬件系統(tǒng)的測試及調(diào)試流程,并給出了部分的調(diào)試結(jié)果。 該系統(tǒng)主要優(yōu)點(diǎn)有:實(shí)時性、高速性。硬件設(shè)計的執(zhí)行速度,在高速DSP和FPGA中實(shí)現(xiàn)信號處理算法程序,保證了系統(tǒng)實(shí)時性的實(shí)現(xiàn);性價比高。自行研究設(shè)計的電路及硬件系統(tǒng)比較好的解決了高速實(shí)時圖像處理的需求。
上傳時間: 2013-05-30
上傳用戶:fxf126@126.com
隨著微電子技術(shù)的快速發(fā)展,電子設(shè)備逐漸向著小型化、集成化方向發(fā)展;人們在要求設(shè)備性能不斷提升的同時,還要求設(shè)備功耗低、體積小、重量輕、可靠性高。同樣在我軍武器裝備的研制過程中,也對各武器裝備都提出了新的要求,特別是針對單兵配備的便攜設(shè)備,對體積、功耗、擴(kuò)展性的要求更是嚴(yán)格。 在某手持式設(shè)備的開發(fā)項(xiàng)目中,需要設(shè)計一塊接口板,要求實(shí)現(xiàn)高達(dá)8個串行口擴(kuò)展以及能源管理和數(shù)字輸入輸出接口等功能,該接口板與處理器模塊的連接總線采用LPC總線,整個手持設(shè)備除了對功能有基本的要求以外,對體積及功耗都提出了極高的要求。針對項(xiàng)目的具體設(shè)計要求,經(jīng)過與傳統(tǒng)設(shè)計方法的比較,決定采用FPGA來實(shí)現(xiàn)LPC接口及UART控制器功能。 論文的主要目標(biāo)是完成LPC接口的UART控制在FPGA中的實(shí)現(xiàn)。對于各模塊中的關(guān)鍵的功能部分,文中對其實(shí)現(xiàn)都進(jìn)行了詳細(xì)的說明。整個設(shè)計全部采用硬件描述語言(HDL)實(shí)現(xiàn),并且采用了分模塊的設(shè)計風(fēng)格,具有很好的重用性。 為了在硬件平臺上驗(yàn)證設(shè)計,還實(shí)做了FPGA驗(yàn)證平臺,并用C語言編寫了測試程序。經(jīng)過驗(yàn)證,該方案完全實(shí)現(xiàn)了接口板的功能要求,并且滿足體積和功耗上的要求,取得了良好的效果。 論文通過采用FPGA作為電路設(shè)計的核心,以一種新的數(shù)字電路設(shè)計方法實(shí)現(xiàn)電路功能;旨在通過這種方式,不斷提高設(shè)備的性能并拓展設(shè)計者思想。
上傳時間: 2013-04-24
上傳用戶:wlyang
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1