近年來(lái),人們對(duì)無(wú)線數(shù)據(jù)和多媒體業(yè)務(wù)的需求迅猛增加,促進(jìn)了寬帶無(wú)線通信新技術(shù)的發(fā)展和應(yīng)用。正交頻分復(fù)用 (Orthogonal Frequency Division Multiolexing,OFDM)技術(shù)已經(jīng)廣泛應(yīng)用于各種高速寬帶無(wú)線通信系統(tǒng)中。然而 OFDM 系統(tǒng)相比單載波系統(tǒng)更容易受到頻偏和時(shí)偏的影響,因此如何有效地消除頻偏和時(shí)偏,實(shí)現(xiàn)系統(tǒng)的時(shí)頻同步是 OFDM 系統(tǒng)中非常關(guān)鍵的技術(shù)。 本文討論了非同步對(duì) OFDM 系統(tǒng)的影響,分析了當(dāng)前用于 OFDM 系統(tǒng)中基于數(shù)據(jù)符號(hào)的同步算法,并簡(jiǎn)單介紹非基于數(shù)據(jù)符號(hào)同步技術(shù)。基于數(shù)據(jù)符號(hào)的同步技術(shù)通過(guò)加入訓(xùn)練符號(hào)或?qū)ьl等附加信息,并利用導(dǎo)頻或訓(xùn)練符號(hào)的相關(guān)性實(shí)現(xiàn)時(shí)頻同步。此算法由于加入了附加信息,降低了帶寬利用率,但同步精度相對(duì)較高,同步捕獲時(shí)間較短。 隨著電子芯片技術(shù)的快速發(fā)展,電子設(shè)計(jì)自動(dòng)化 (Electronic DesignAutomation,EDA) 技術(shù)和可編程邏輯芯片 (FPGA/CPLD) 的應(yīng)用越來(lái)越受到大家的重視,為此文中對(duì) EDA 技術(shù)和 Altera 公司制造的 FPGA 芯片的原理和結(jié)構(gòu)特點(diǎn)進(jìn)行了闡述,還介紹了在相關(guān)軟件平臺(tái)進(jìn)行開(kāi)發(fā)的系統(tǒng)流程。 論文在對(duì)基于數(shù)據(jù)符號(hào)三種算法進(jìn)行較詳細(xì)的分析和研究的基礎(chǔ)上,尤其改進(jìn)了基于導(dǎo)頻符號(hào)的同步算法之后,利用 Altera 公司的 FPGA 芯片EP1S25F102015 在 OuartusⅡ5.0 工具平臺(tái)上實(shí)現(xiàn)了 OFDM 同步的硬件設(shè)計(jì),然后進(jìn)行了軟件仿真。其中對(duì)基于導(dǎo)頻符號(hào)同步的改進(jìn)算法硬件設(shè)計(jì)過(guò)程了進(jìn)行了詳細(xì)闡述。不僅如此,對(duì)于基于 PN 序列幀的同步算法和基于循環(huán)前綴 (Cycle Prefix,CP) 的極大似然 (Maximam Likelihood,ML)估計(jì)同步算法也有具體的仿真實(shí)現(xiàn)。 最后,文章還對(duì)它們進(jìn)行了比較,基于導(dǎo)頻符號(hào)同步設(shè)計(jì)的同步精度比較高,但是耗費(fèi)芯片的資源多,另一個(gè)缺點(diǎn)是沒(méi)有頻偏估計(jì),因此運(yùn)用受到一定限制。基于 PN 序列幀的同步設(shè)計(jì)使用了最少的芯片資源,但要提取 PN 序列中的信號(hào)數(shù)據(jù)有一定困難。基于循環(huán)前綴的同步設(shè)計(jì)占用了芯片 I/O 腳稍顯多。這幾種同步算法各有優(yōu)缺點(diǎn),但可以根據(jù)不同的信道環(huán)境選用它們。
標(biāo)簽: FPGA 數(shù)據(jù) 同步的 仿真實(shí)現(xiàn)
上傳時(shí)間: 2013-04-24
上傳用戶:斷點(diǎn)PPpp
正交頻分復(fù)用技術(shù)(OFDM)是未來(lái)寬帶無(wú)線通信中的關(guān)鍵技術(shù)。隨著用戶對(duì)實(shí)時(shí)多媒體業(yè)務(wù),高速移動(dòng)業(yè)務(wù)需求的迅速增加,OFDM由于其頻譜效率高,抗多徑效應(yīng)能力強(qiáng),抗干擾性能好等特點(diǎn),該技術(shù)正得到了廣泛的應(yīng)用。 OFDM系統(tǒng)的子載波之間必須保持嚴(yán)格的正交性,因此對(duì)符號(hào)定時(shí)和載波頻偏非常敏感。本課題的主要任務(wù)是分析各種算法的性能的優(yōu)劣,選取合適的算法進(jìn)行FPGA的實(shí)現(xiàn)。 本文首先簡(jiǎn)要介紹了無(wú)線信道的傳輸特性和OFDM系統(tǒng)的基本原理,進(jìn)而對(duì)符號(hào)同步和載波同步對(duì)接收信號(hào)的影響做了分析。然后對(duì)比了非數(shù)據(jù)輔助式同步算法和數(shù)據(jù)輔助式同步算法的不同特點(diǎn),決定采用數(shù)據(jù)輔助式同步算法來(lái)解決基于IEEE 802.16-2004協(xié)議的突發(fā)傳輸系統(tǒng)的同步問(wèn)題。最后部分進(jìn)行了算法的實(shí)現(xiàn)和仿真,所有實(shí)現(xiàn)的仿真均在QuartusⅡ下按照IEEE 802.16-2004協(xié)議的符號(hào)和前導(dǎo)字的結(jié)構(gòu)進(jìn)行。 本文的主要工作:(1)采用自相關(guān)和互相關(guān)聯(lián)合檢測(cè)算法同時(shí)完成幀到達(dá)檢測(cè)和符號(hào)同步估計(jì),只用接收數(shù)據(jù)的符號(hào)位做相關(guān)運(yùn)算,有效地解決了判決門(mén)限需要變化的問(wèn)題,同時(shí)也減少了資源的消耗;(2)在時(shí)域分?jǐn)?shù)倍頻偏估計(jì)時(shí),利用基于流水線結(jié)構(gòu)的Cordic模塊計(jì)算長(zhǎng)前導(dǎo)字共軛相乘后的相角,求出分?jǐn)?shù)倍頻偏的估計(jì)值;(3)采用滑動(dòng)窗口相關(guān)求和的方法估計(jì)整數(shù)倍頻偏值,在此只用頻域數(shù)據(jù)的符號(hào)位做相關(guān)運(yùn)算,有效地解決了傳統(tǒng)算法估計(jì)速度慢的缺點(diǎn),同時(shí)也減少了資源的消耗。
上傳時(shí)間: 2013-05-23
上傳用戶:宋桃子
隨著信號(hào)處理技術(shù)的進(jìn)步和電子技術(shù)的發(fā)展,雷達(dá)信號(hào)偵察接收機(jī)逐漸從模擬體制向數(shù)字體制轉(zhuǎn)變。軟件無(wú)線電概念的提出,促使雷達(dá)偵察接收機(jī)朝大帶寬、全截獲方向發(fā)展,現(xiàn)有的串行信號(hào)處理體制已經(jīng)很難滿足系統(tǒng)要求。FPGA器件的出現(xiàn),為實(shí)現(xiàn)寬帶雷達(dá)信號(hào)偵察數(shù)字接收機(jī)提供了硬件支持。 本文結(jié)合FPGA芯片特點(diǎn),在前人研究基礎(chǔ)上,從算法和硬件實(shí)現(xiàn)兩方面,對(duì)雷達(dá)信號(hào)偵察數(shù)字接收機(jī)若干關(guān)鍵技術(shù)進(jìn)行了研究和創(chuàng)新,主要研究?jī)?nèi)容包括以下幾個(gè)方面。 1)給出了基于QuartusII/Matlab和ISE/ModelSim/Matlab的兩種FPGA設(shè)計(jì)聯(lián)合仿真技術(shù)。這種聯(lián)合仿真技術(shù),大大提高了基于FPGA的雷達(dá)信號(hào)偵察數(shù)字接收機(jī)的設(shè)計(jì)效率。 2)給出了一種基于FFT/IFFT的寬帶數(shù)字正交變換算法,并將該算法在FPGA中進(jìn)行了硬件實(shí)現(xiàn),設(shè)計(jì)可對(duì)600MHz帶寬內(nèi)的輸入信號(hào)進(jìn)行實(shí)時(shí)正交變換。 3)提出了一種全并行結(jié)構(gòu)FFT的FPGA實(shí)現(xiàn)方案,并將其在FPGA芯片中進(jìn)行了硬件實(shí)現(xiàn),設(shè)計(jì)能夠在一個(gè)時(shí)鐘周期內(nèi)完成32點(diǎn)并行FFT運(yùn)算,滿足了數(shù)字信道化接收機(jī)對(duì)數(shù)據(jù)處理速度的要求。 4)提出了一種自相關(guān)信號(hào)檢測(cè)FPGA實(shí)現(xiàn)方案,通過(guò)改變FIFO長(zhǎng)度改變自相關(guān)運(yùn)算點(diǎn)數(shù),實(shí)現(xiàn)了弱信號(hào)檢測(cè)。提出通過(guò)二次門(mén)限處理來(lái)消除檢測(cè)脈沖中的毛刺和凹陷,降低了虛警概率,提高了檢測(cè)結(jié)果的可靠性。 5)在單通道自相關(guān)信號(hào)檢測(cè)算法基礎(chǔ)上,提出采用三路并行檢測(cè),每路采用不同的相關(guān)點(diǎn)數(shù)和檢測(cè)門(mén)限,再綜合考慮三路檢測(cè)結(jié)果,得到最終檢測(cè)結(jié)果。給出了算法FPGA實(shí)現(xiàn)過(guò)程,并對(duì)設(shè)計(jì)進(jìn)行了聯(lián)合時(shí)序仿真,提高了檢測(cè)性能。 6)給出了一種利用FFT變換后的兩根最大譜線進(jìn)行插值的快速高精度頻率估計(jì)方法,并將該算法在FPGA硬件中進(jìn)行了實(shí)現(xiàn)。通過(guò)利用FFT運(yùn)算后的實(shí)/虛部最大值進(jìn)行插值,降低了硬件資源消耗、縮短了運(yùn)算延遲。 7)結(jié)合4)、5)、6)中的研究成果,完成了對(duì)雷達(dá)脈沖信號(hào)到達(dá)時(shí)間、終止時(shí)間、脈沖寬度和脈沖頻率的估計(jì),最終在一塊FPGA芯片內(nèi)實(shí)現(xiàn)了一個(gè)精簡(jiǎn)的雷達(dá)信號(hào)偵察數(shù)字接收機(jī),并在微波暗室中進(jìn)行了測(cè)試。
標(biāo)簽: FPGA 雷達(dá)信號(hào) 數(shù)字接收機(jī)
上傳時(shí)間: 2013-06-13
上傳用戶:Divine
├電力電子課件動(dòng)畫(huà) 13篇 6.4M PPT版.rar 電力電子課件 附動(dòng)畫(huà)、習(xí)題 第1章 電力電子器件概述 第2章 整流電路 第3章 直流斬波電路 第4章 交流電力控制電路和交-交變頻電路 第5章 逆變電路 第6章 脈寬調(diào)(PWM)技術(shù) 第7章 軟開(kāi)關(guān)技術(shù) 第8章 組合變流電路
標(biāo)簽: 電力 動(dòng)畫(huà) 電子課件
上傳時(shí)間: 2013-04-24
上傳用戶:t1213121
正交頻分復(fù)用(OFDM)是一種無(wú)線環(huán)境下的高速傳輸技術(shù),它使用一系列低速子載波并行傳輸數(shù)據(jù),具有抗多徑干擾的能力、能以很高的頻譜利用率實(shí)現(xiàn)高速數(shù)據(jù)傳輸?shù)葍?yōu)點(diǎn)。數(shù)字音頻廣播(DAB)系統(tǒng)中采用OFDM調(diào)制技術(shù)。 本文首先概述了OF'DM的基本原理和實(shí)現(xiàn)方法,分析了DAB中不同模式下OFDM調(diào)制的參數(shù)和特點(diǎn)。實(shí)現(xiàn)OFDM的核心技術(shù)是快速傅立葉變換(FFT)。本文在分析研究了多種FFT算法的基礎(chǔ)上選擇了最適合FPGA實(shí)現(xiàn)的,滿足DAB系統(tǒng)中OFDM調(diào)制要求的FFT算法,即將2048點(diǎn)FFT分解為基-4和基-2混合基算法。 本文研究重點(diǎn)是使用FPGA實(shí)現(xiàn)2048點(diǎn)復(fù)數(shù)FFT處理器。2048點(diǎn)FFT由五級(jí)基-4運(yùn)算和一級(jí)基-2運(yùn)算組成。針對(duì)這一算法以及FPGA特點(diǎn),進(jìn)行系統(tǒng)結(jié)構(gòu)設(shè)計(jì)、各個(gè)模塊設(shè)計(jì)、FPGA實(shí)現(xiàn)和測(cè)試。一個(gè)基-4和基-2復(fù)用的蝶形運(yùn)算模塊是整個(gè)FFT處理器的核心部分。此外系統(tǒng)還包括:系統(tǒng)控制模塊,地址產(chǎn)生模塊,RAM和ROM。本文特別針對(duì)2048點(diǎn)按頻率抽取基-4/2順序處理的FFT處理器提出了一種巧妙的數(shù)據(jù)地址和旋轉(zhuǎn)因子地址生成的方法。 仿真和驗(yàn)證表明,運(yùn)算的結(jié)果可以達(dá)到一定的精度要求,運(yùn)算速度滿足系統(tǒng)要求,說(shuō)明該OFDM調(diào)制器的設(shè)計(jì)是可行的,可以應(yīng)用于DAB系統(tǒng)中
標(biāo)簽: OFDM 數(shù)字音頻廣播 調(diào)制
上傳時(shí)間: 2013-06-05
上傳用戶:star_in_rain
軟件無(wú)線電技術(shù)作為一種新的通信技術(shù),其基本思想是構(gòu)造一個(gè)通用硬件平臺(tái),使寬帶A/D,D/A盡量靠近天線,在數(shù)字域完成信號(hào)處理,通過(guò)選用不同軟件模塊即可實(shí)現(xiàn)不同的通信功能,這樣大大縮短了電臺(tái)的研發(fā)周期。該技術(shù)在通信(尤其是在移動(dòng)通信)領(lǐng)域有著迫切的需求和廣闊的應(yīng)用前景。 本文闡述了軟件無(wú)線電的基礎(chǔ)理論,對(duì)信號(hào)采樣理論、多速率信號(hào)處理技術(shù)、高效數(shù)字濾波器、數(shù)字正交變換理論進(jìn)行了分析和研究。從目前器件發(fā)展水平和實(shí)驗(yàn)研究條件出發(fā),設(shè)計(jì)了一個(gè)基于FPGA的軟件無(wú)線電通信平臺(tái)。設(shè)計(jì)采用了中頻數(shù)字化處理的硬件平臺(tái)結(jié)構(gòu),選用Altera Cyclone系列FPGA作為信號(hào)處理和總體控制配置的核心,并結(jié)合專(zhuān)用通信芯片,數(shù)字上變頻器AD9856和數(shù)字下變頻器AD6654來(lái)實(shí)現(xiàn)該平臺(tái)。采用VHDL和Verilog HDL語(yǔ)言對(duì)時(shí)分復(fù)用模塊、信道編解碼模塊、調(diào)制解調(diào)模塊等進(jìn)行了模塊化設(shè)計(jì),并對(duì)電路板設(shè)計(jì)過(guò)程中系統(tǒng)的配置和控制、無(wú)源濾波器設(shè)計(jì)、阻抗匹配電路設(shè)計(jì)等問(wèn)題進(jìn)行了詳細(xì)的討論,最后對(duì)印制電路板進(jìn)行測(cè)試和調(diào)試,獲得了預(yù)期的效果。 本文給出的設(shè)計(jì)方案,大大簡(jiǎn)化了數(shù)字通信系統(tǒng)的硬件設(shè)備,具有較強(qiáng)的通用性和靈活性,通過(guò)修改系統(tǒng)參數(shù)和配置程序,即可適應(yīng)不同的通信模式和信道狀況,充分體現(xiàn)了軟件無(wú)線電的優(yōu)勢(shì)。該平臺(tái)不僅僅能應(yīng)用在通信設(shè)備上,在許多系統(tǒng)驗(yàn)證平臺(tái)、測(cè)試設(shè)備中均可應(yīng)用,頗具實(shí)用價(jià)值。
標(biāo)簽: FPGA 軟件無(wú)線電 通信平臺(tái)
上傳時(shí)間: 2013-07-21
上傳用戶:淺言微笑
本課程通過(guò)對(duì)通信電源網(wǎng)絡(luò)結(jié)構(gòu)及基本配置的介紹,配合例題及防護(hù)的案例講解,引導(dǎo)學(xué)員了解并掌握通信電源的基本知識(shí)及基本維護(hù)方法。學(xué)完本課程后,學(xué)員能夠:了解通信電源在通信網(wǎng)絡(luò)中的種類(lèi)及地位;掌握交直流電源的配置;掌握通信電源中各模塊的基本功能;掌握通信電源的基本防護(hù)方法。 作為通信系統(tǒng)的"心臟",通信電源在通信局(站)中具有無(wú)可比擬的重要地位。它包含的內(nèi)容非常廣泛,不僅包含48V直流組合通信電源系統(tǒng),而且還包括DC/DC二次模塊電源,UPS不間斷電源和通信用蓄電池等。通信電源的核心基本一致,都是以功率電子為基礎(chǔ),通過(guò)穩(wěn)定的控制環(huán)設(shè)計(jì),再加上必要的外部監(jiān)控,最終實(shí)現(xiàn)能量的轉(zhuǎn)換和過(guò)程的監(jiān)控。通信設(shè)備需要電源設(shè)備提供直流供電。電源的安全、可靠是保證通信系統(tǒng)正常運(yùn)行的重要條件。
標(biāo)簽: 華為 通信電源 技術(shù)基礎(chǔ)
上傳時(shí)間: 2013-04-24
上傳用戶:妄想演繹師
正交頻分復(fù)用(OFDM,Orthogonal Frequency Division Multiplexing)技術(shù)作為一種可以有效對(duì)抗信號(hào)波形間干擾的高速傳輸技術(shù),引起了廣泛關(guān)注。它利用許多并行的、傳輸?shù)退俾蕯?shù)據(jù)的子載波來(lái)實(shí)現(xiàn)高速率的通信。它的特點(diǎn)是各子載波相互正交,所以擴(kuò)頻調(diào)制后的頻譜可以相互重疊,不但減小了子載波問(wèn)的相互干擾,還大大提高了頻譜利用率。由于OFDM的高頻譜利用率、易于硬件實(shí)現(xiàn)、對(duì)抗頻率選擇性衰落和窄帶干擾的能力突出等優(yōu)點(diǎn),它成為第四代移動(dòng)通信的首選技術(shù),是當(dāng)前移動(dòng)通信技術(shù)研究的熱點(diǎn)問(wèn)題。 本文概括的介紹了OFDM系統(tǒng)的基本概念、基本工作原理和關(guān)鍵技術(shù),重點(diǎn)討論了如何在FPGA上實(shí)現(xiàn)OFDM低中頻收發(fā)信機(jī)。基于這些理論知識(shí),確定了OFDM低中頻收發(fā)信機(jī)系統(tǒng)實(shí)現(xiàn)方案,并選擇ALTERA公司的Cyclone
標(biāo)簽: FPGA OFDM 全數(shù)字 收發(fā)信機(jī)
上傳時(shí)間: 2013-06-29
上傳用戶:水瓶kmoon5
隨著數(shù)字時(shí)代的到來(lái),信息化程度的不斷提高,人們相互之間的信息和數(shù)據(jù)交換日益增加。正交幅度調(diào)制器(QAM Modulator)作為一種高頻譜利用率的數(shù)字調(diào)制方式,在數(shù)字電視廣播、固定寬帶無(wú)線接入、衛(wèi)星通信、數(shù)字微波傳輸?shù)葘拵ㄐ蓬I(lǐng)域得到了廣泛應(yīng)用。 近年來(lái),集成電路和數(shù)字通信技術(shù)飛速發(fā)展,F(xiàn)PGA作為集成度高、使用方便、代碼可移植性等優(yōu)點(diǎn)的通用邏輯開(kāi)發(fā)芯片,在電子設(shè)計(jì)行業(yè)深受歡迎,市場(chǎng)占有率不斷攀升。本文研究基于FPGA與AD9857實(shí)現(xiàn)四路Q(chēng)AM調(diào)制的全過(guò)程。FPGA實(shí)現(xiàn)信源處理、信道編碼輸出四路基帶I/Q信號(hào),AD9857實(shí)現(xiàn)對(duì)四路I/Q信號(hào)的調(diào)制,輸出中頻信號(hào)。本文具體內(nèi)容總結(jié)如下: 1.介紹國(guó)內(nèi)數(shù)字電視發(fā)展?fàn)顩r、國(guó)內(nèi)國(guó)際的數(shù)字電視標(biāo)準(zhǔn),并詳細(xì)介紹國(guó)內(nèi)有線電視的系統(tǒng)組成及QAM調(diào)制器的發(fā)展過(guò)程。 2.研究了QAM調(diào)制原理,其中包括信源編碼、TS流標(biāo)準(zhǔn)格式轉(zhuǎn)換、信道編碼的原理及AD9857的工作原理等。并著重研究了信道編碼過(guò)程,包括能量擴(kuò)散、RS編碼、數(shù)據(jù)交織、星座映射與差分編碼等。 3.深入研究了基于FPAG與AD9857電路設(shè)計(jì),其中包括詳細(xì)研究了FPGA與AD9857的電路設(shè)計(jì)、在allegro下的PCB設(shè)計(jì)及光繪文件的制作,并做成成品。 4.簡(jiǎn)單介紹了FPGA的開(kāi)發(fā)流程。 5.深入研究了基于FPAG代碼開(kāi)發(fā),其中主要包括I2C接口實(shí)現(xiàn),ASI到SPI的轉(zhuǎn)換,信道編碼中的TS流包處理、能量擴(kuò)散、RS編碼、數(shù)據(jù)交織、星座映射與差分編碼的實(shí)現(xiàn)及AD9857的FPGA控制使其實(shí)現(xiàn)四路Q(chēng)AM的調(diào)制。 6.介紹代碼測(cè)試、電路測(cè)試及系統(tǒng)指標(biāo)測(cè)試。 最終系統(tǒng)指標(biāo)測(cè)試表明基于FPGA與AD9857的四路DVB-C調(diào)制器基本達(dá)到了國(guó)標(biāo)的要求。
上傳時(shí)間: 2013-07-05
上傳用戶:leehom61
無(wú)線局域網(wǎng)是計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)和無(wú)線通信技術(shù)相結(jié)合的產(chǎn)物,是利用無(wú)線媒介傳輸信息的計(jì)算機(jī)網(wǎng)絡(luò)。在無(wú)線通信信道中,由于多徑時(shí)延不可避免地存在符號(hào)間干擾,正交頻分復(fù)用(OFDM)作為一種可以有效對(duì)抗符號(hào)間干擾(ISI)和提高頻譜利用率的高速傳輸技術(shù),引起了廣泛關(guān)注。在無(wú)線局域網(wǎng)(WLAN)系統(tǒng)中,OFDM調(diào)制技術(shù)已經(jīng)被采用作為其物理層標(biāo)準(zhǔn),并且公認(rèn)為是下一代無(wú)線通信系統(tǒng)中的核心技術(shù)。基于IEEE802.11a的無(wú)線局域網(wǎng)標(biāo)準(zhǔn)的物理層采用了OFDM技術(shù),能有效的對(duì)抗多徑信道衰落,達(dá)到54Mbps的速度,而未來(lái)而的IEEE802.11n將達(dá)到100Mbps的高速。因此,研發(fā)以O(shè)FDM為核心的原型機(jī)研究非常有必要。 本文在深入理解OFDM技術(shù)的同時(shí),結(jié)合相應(yīng)的EDA工具對(duì)系統(tǒng)進(jìn)行建模并基于IEEE802.11a物理層標(biāo)準(zhǔn)給出了一種OFDM基帶發(fā)射機(jī)系統(tǒng)的FPGA實(shí)現(xiàn)方案。整個(gè)設(shè)計(jì)采用目前主流的自頂向下的設(shè)計(jì)方法,由總體設(shè)計(jì)至詳細(xì)設(shè)計(jì)逐步細(xì)化。在系統(tǒng)功能模塊的FPGA實(shí)現(xiàn)過(guò)程中,針對(duì)Xilinx一款160萬(wàn)門(mén)的Spartan-3E XCS1600E芯片,依照:IEEE802.11a幀格式,對(duì)發(fā)射機(jī)系統(tǒng)各個(gè)模塊進(jìn)行了詳細(xì)設(shè)計(jì)和仿真: (1)訓(xùn)練序列生成模塊,包括長(zhǎng),短訓(xùn)練序列; (2)信令模塊,包括卷積編碼,交織,BPSK調(diào)制映射; (3)數(shù)據(jù)模塊,包括加擾,卷積編碼,刪余,交織,BPSK/QPSK/16QAM/64QAM調(diào)制映射; (4)OFDM處理部分,包括導(dǎo)頻插入,加循環(huán)前綴,IFFT處理; (5)對(duì)整個(gè)發(fā)射處理部分聯(lián)調(diào),并給出仿真結(jié)果另外,還完成了接收機(jī)部分模塊的FPGA設(shè)計(jì),并給出了相應(yīng)的頂層結(jié)構(gòu)與仿真波形。最后提出了改進(jìn)和進(jìn)一步開(kāi)發(fā)的方向。
標(biāo)簽: OFDM FPGA 發(fā)射機(jī)
上傳時(shí)間: 2013-04-24
上傳用戶:李彥東
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1