亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

避免死鎖

  • BUCK變換中的尖峰問題

    BucK變換器在開關(guān)轉(zhuǎn)換瞬間.由于線路上存在感抗,會在主功率管和二極管上產(chǎn)生電壓尖峰,使之承受較大的電壓應(yīng)力和電流沖擊,從而導(dǎo)致器件熱損壞及電擊穿 因此,為避免此現(xiàn)象,有必要對電壓尖峰的原因進行分析研究,找出有效的解決辦法。

    標簽: BUCK 變換 尖峰

    上傳時間: 2013-10-15

    上傳用戶:youth25

  • 時鐘分相技術(shù)應(yīng)用

    摘要: 介紹了時鐘分相技術(shù)并討論了時鐘分相技術(shù)在高速數(shù)字電路設(shè)計中的作用。 關(guān)鍵詞: 時鐘分相技術(shù); 應(yīng)用 中圖分類號: TN 79  文獻標識碼:A   文章編號: 025820934 (2000) 0620437203 時鐘是高速數(shù)字電路設(shè)計的關(guān)鍵技術(shù)之一, 系統(tǒng)時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現(xiàn)代電子系統(tǒng)對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設(shè)計上面。但隨著系統(tǒng)時鐘頻率的升高。我們的系統(tǒng)設(shè)計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設(shè)計提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統(tǒng)時鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時鐘相應(yīng)的電磁輻射(EM I) 比較嚴重。 所以在高速數(shù)字系統(tǒng)設(shè)計中對高頻時鐘信號的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術(shù), 以低頻的時鐘實現(xiàn)高頻的處 理。 1 時鐘分相技術(shù) 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術(shù), 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設(shè)計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統(tǒng)的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現(xiàn)高精度的時間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時鐘 芯片。這些芯片的出現(xiàn), 大大促進了時鐘分相技術(shù)在實際電 路中的應(yīng)用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(huán)(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩(wěn)定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應(yīng)用的實例加以說明。2 應(yīng)用實例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數(shù)據(jù), 與其同步的時鐘信號并不傳輸。 但本地接收到數(shù)據(jù)時, 為了準確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時鐘, 即要獲取與數(shù) 據(jù)同步的時鐘信號。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數(shù)據(jù) 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應(yīng)該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統(tǒng)設(shè)計帶來很多的困擾。 我們在這里使用鎖相環(huán)和時鐘分相技術(shù), 將一個16MHz 晶振作為時鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數(shù)據(jù)同步性最好的一個。選擇的依據(jù)是: 在每個數(shù)據(jù)幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數(shù)據(jù), 如果經(jīng)某個時鐘鎖存后的數(shù)據(jù)在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個判別原理, 我們設(shè)計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數(shù)據(jù)進行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產(chǎn)的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現(xiàn)了同步時鐘的獲取, 這部分 電路目前已實際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價格昂貴, 而且系統(tǒng)設(shè)計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產(chǎn)生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現(xiàn)在使用時鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時鐘分別作為ADC 的 轉(zhuǎn)換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經(jīng)過 緩沖、調(diào)理, 送入ADC 進行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時鐘為80MHz 的采 集系統(tǒng)達到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運用時鐘分相技術(shù), 可以有效地用低頻時鐘實現(xiàn)相當于高頻時鐘的時間性能, 并 避免了高速數(shù)字電路設(shè)計中一些問題, 降低了系統(tǒng)設(shè)計的難度。

    標簽: 時鐘 分相 技術(shù)應(yīng)用

    上傳時間: 2013-12-17

    上傳用戶:xg262122

  • HDL的可綜合設(shè)計簡介

    本文簡單探討了verilog HDL設(shè)計中的可綜合性問題,適合HDL初學(xué)者閱讀     用組合邏輯實現(xiàn)的電路和用時序邏輯實現(xiàn)的   電路要分配到不同的進程中。   不要使用枚舉類型的屬性。   Integer應(yīng)加范圍限制。    通常的可綜合代碼應(yīng)該是同步設(shè)計。   避免門級描述,除非在關(guān)鍵路徑中。

    標簽: HDL 綜合設(shè)計

    上傳時間: 2013-10-21

    上傳用戶:smallfish

  • PCB設(shè)計者必看經(jīng)典教材

      在 PCB 設(shè)計中,布線是完成產(chǎn)品設(shè)計的重要步驟,可以說前面的準備工作都是為它而做的,  在整個 PCB 中,以布線的設(shè)計過程限定最高,技巧最細、工作量最大。PCB 布線有單面布線、  雙面布線及多層布線。布線的方式也有兩種:自動布線及交互式布線,在自動布線之前,  可以用交互式預(yù)先對要求比較嚴格的線進行布線,輸入端與輸出端的邊線應(yīng)避免相鄰平行,  以免產(chǎn)生反射干擾。必要時應(yīng)加地線隔離,兩相鄰層的布線要互相垂直,平行容易產(chǎn)生寄生耦合。 目  錄 高速 PCB 設(shè)計指南之一  高速 PCB 設(shè)計指南之二  PCB Layout指南(上)  PCB Layout指南(下)  PCB 設(shè)計的一般原則  PCB 設(shè)計基礎(chǔ)知識  PCB 設(shè)計基本概念  pcb 設(shè)計注意事項  PCB 設(shè)計幾點體會  PCB LAYOUT 技術(shù)大全  PCB 和電子產(chǎn)品設(shè)計  PCB 電路版圖設(shè)計的常見問題  PCB 設(shè)計中格點的設(shè)置  新手設(shè)計 PCB 注意事項  怎樣做一塊好的 PCB 板  射頻電路 PCB 設(shè)計  設(shè)計技巧整理  用 PROTEL99 制作印刷電路版的基本流程  用 PROTEL99SE  布線的基本流程  蛇形走線有什么作用  封裝小知識  典型的焊盤直徑和最大導(dǎo)線寬度的關(guān)系  新手上路認識 PCB  新手上路認識 PCB< ;二>

    標簽: PCB 教材

    上傳時間: 2014-04-18

    上傳用戶:shizhanincc

  • 綜合布線系統(tǒng)施工要點

    橋架設(shè)計合理,保證合適的線纜彎曲半徑。上下左右繞過其他線槽時,轉(zhuǎn)彎坡度要平緩,重點注意兩端線纜下垂受力后是否還能在不壓損線纜的前提下蓋上蓋板。放線過程中主要是注意對拉力的控制,對于帶卷軸包裝的線纜,建議兩頭至少各安排一名工人,把卷軸套在自制的拉線桿上,放線端的工人先從卷軸箱內(nèi)預(yù)拉出一部分線纜,供合作者在管線另一端抽取,預(yù)拉出的線不能過多,避免多根線在場地上纏結(jié)環(huán)繞。拉線工序結(jié)束后,兩端留出的冗余線纜要整理和保護好,盤線時要順著原來的旋轉(zhuǎn)方向,線圈直徑不要太小,有可能的話用廢線頭固定在橋架、吊頂上或紙箱內(nèi),做好標注,提醒其他人員勿動勿踩。

    標簽: 綜合布線系統(tǒng)

    上傳時間: 2013-10-18

    上傳用戶:zhangjinzj

  • 電源完整性分析應(yīng)對高端PCB系統(tǒng)設(shè)計挑戰(zhàn)

    印刷電路板(PCB)設(shè)計解決方案市場和技術(shù)領(lǐng)軍企業(yè)Mentor Graphics(Mentor Graphics)宣布推出HyperLynx® PI(電源完整性)產(chǎn)品,滿足業(yè)內(nèi)高端設(shè)計者對于高性能電子產(chǎn)品的需求。HyperLynx PI產(chǎn)品不僅提供簡單易學(xué)、操作便捷,又精確的分析,讓團隊成員能夠設(shè)計可行的電源供應(yīng)系統(tǒng);同時縮短設(shè)計周期,減少原型生成、重復(fù)制造,也相應(yīng)降低產(chǎn)品成本。隨著當今各種高性能/高密度/高腳數(shù)集成電路的出現(xiàn),傳輸系統(tǒng)的設(shè)計越來越需要工程師與布局設(shè)計人員的緊密合作,以確保能夠透過眾多PCB電源與接地結(jié)構(gòu),為IC提供純凈、充足的電力。配合先前推出的HyperLynx信號完整性(SI)分析和確認產(chǎn)品組件,Mentor Graphics目前為用戶提供的高性能電子產(chǎn)品設(shè)計堪稱業(yè)內(nèi)最全面最具實用性的解決方案。“我們擁有非常高端的用戶,受到高性能集成電路多重電壓等級和電源要求的驅(qū)使,需要在一個單一的PCB中設(shè)計30余套電力供應(yīng)結(jié)構(gòu)。”Mentor Graphics副總裁兼系統(tǒng)設(shè)計事業(yè)部總經(jīng)理Henry Potts表示。“上述結(jié)構(gòu)的設(shè)計需要快速而準 確的直流壓降(DC Power Drop)和電源雜訊(Power Noise)分析。擁有了精確的分析信息,電源與接地層結(jié)構(gòu)和解藕電容數(shù)(de-coupling capacitor number)以及位置都可以決定,得以避免過于保守的設(shè)計和高昂的產(chǎn)品成本。”

    標簽: PCB 電源完整性 高端

    上傳時間: 2013-11-18

    上傳用戶:362279997

  • 通孔插裝PCB的可制造性設(shè)計

    對于電子產(chǎn)品設(shè)計師尤其是線路板設(shè)計人員來說,產(chǎn)品的可制造性設(shè)計(Design For Manufacture,簡稱DFM)是一個必須要考慮的因素,如果線路板設(shè)計不符合可制造性設(shè)計要求,將大大降低產(chǎn)品的生產(chǎn)效率,嚴重的情況下甚至會導(dǎo)致所設(shè)計的產(chǎn)品根本無法制造出來。目前通孔插裝技術(shù)(Through Hole Technology,簡稱THT)仍然在使用,DFM在提高通孔插裝制造的效率和可靠性方面可以起到很大作用,DFM方法能有助于通孔插裝制造商降低缺陷并保持競爭力。本文介紹一些和通孔插裝有關(guān)的DFM方法,這些原則從本質(zhì)上來講具有普遍性,但不一定在任何情況下都適用,不過,對于與通孔插裝技術(shù)打交道的PCB設(shè)計人員和工程師來說相信還是有一定的幫助。1、排版與布局在設(shè)計階段排版得當可避免很多制造過程中的麻煩。(1)用大的板子可以節(jié)約材料,但由于翹曲和重量原因,在生產(chǎn)中運輸會比較困難,它需要用特殊的夾具進行固定,因此應(yīng)盡量避免使用大于23cm×30cm的板面。最好是將所有板子的尺寸控制在兩三種之內(nèi),這樣有助于在產(chǎn)品更換時縮短調(diào)整導(dǎo)軌、重新擺放條形碼閱讀器位置等所導(dǎo)致的停機時間,而且板面尺寸種類少還可以減少波峰焊溫度曲線的數(shù)量。(2)在一個板子里包含不同種拼板是一個不錯的設(shè)計方法,但只有那些最終做到一個產(chǎn)品里并具有相同生產(chǎn)工藝要求的板才能這樣設(shè)計。(3)在板子的周圍應(yīng)提供一些邊框,尤其在板邊緣有元件時,大多數(shù)自動裝配設(shè)備要求板邊至少要預(yù)留5mm的區(qū)域。(4)盡量在板子的頂面(元件面)進行布線,線路板底面(焊接面)容易受到損壞。不要在靠近板子邊緣的地方布線,因為生產(chǎn)過程中都是通過板邊進行抓持,邊上的線路會被波峰焊設(shè)備的卡爪或邊框傳送器損壞。(5)對于具有較多引腳數(shù)的器件(如接線座或扁平電纜),應(yīng)使用橢圓形焊盤而不是圓形,以防止波峰焊時出現(xiàn)錫橋(圖1)。

    標簽: PCB 通孔插裝 可制造性

    上傳時間: 2013-11-07

    上傳用戶:refent

  • 傳輸線

    第一章  傳輸線理論一  傳輸線原理二  微帶傳輸線三  微帶傳輸線之不連續(xù)分析第二章  被動組件之電感設(shè)計與分析一  電感原理二  電感結(jié)構(gòu)與分析三  電感設(shè)計與模擬四  電感分析與量測傳輸線理論與傳統(tǒng)電路學(xué)之最大不同,主要在于組件之尺寸與傳導(dǎo)電波之波長的比值。當組件尺寸遠小于傳輸線之電波波長時,傳統(tǒng)的電路學(xué)理論才可以使用,一般以傳輸波長(Guide wavelength)的二十分之ㄧ(λ/20)為最大尺寸,稱為集總組件(Lumped elements);反之,若組件的尺寸接近傳輸波長,由于組件上不同位置之電壓或電流的大小與相位均可能不相同,因而稱為散布式組件(Distributed elements)。 由于通訊應(yīng)用的頻率越來越高,相對的傳輸波長也越來越小,要使電路之設(shè)計完全由集總組件所構(gòu)成變得越來越難以實現(xiàn),因此,運用散布式組件設(shè)計電路也成為無法避免的選擇。 當然,科技的進步已經(jīng)使得集總組件的制作變得越來越小,例如運用半導(dǎo)體制程、高介電材質(zhì)之低溫共燒陶瓷(LTCC)、微機電(MicroElectroMechanical Systems, MEMS)等技術(shù)制作集總組件,然而,其中電路之分析與設(shè)計能不乏運用到散布式傳輸線的理論,如微帶線(Microstrip Lines)、夾心帶線(Strip Lines)等的理論。因此,本章以討論散布式傳輸線的理論開始,進而以微帶傳輸線為例介紹其理論與公式,并討論微帶傳輸線之各種不連續(xù)之電路,以作為后續(xù)章節(jié)之被動組件的運用。

    標簽: 傳輸線

    上傳時間: 2014-01-10

    上傳用戶:sunshie

  • 數(shù)字地模擬地的布線規(guī)則

    數(shù)字地模擬地的布線規(guī)則,如何降低數(shù)字信號和模擬信號間的相互干擾呢?在設(shè)計之前必須了解電磁兼容(EMC)的兩個基本原則:第一個原則是盡可能減小電流環(huán)路的面積;第二個原則是系統(tǒng)只采用一個參考面。相反,如果系統(tǒng)存在兩個參考面,就可能形成一個偶極天線(注:小型偶極天線的輻射大小與線的長度、流過的電流大小以及頻率成正比);而如果信號不能通過盡可能小的環(huán)路返回,就可能形成一個大的環(huán)狀天線(注:小型環(huán)狀天線的輻射大小與環(huán)路面積、流過環(huán)路的電流大小以及頻率的平方成正比)。在設(shè)計中要盡可能避免這兩種情況。 有人建議將混合信號電路板上的數(shù)字地和模擬地分割開,這樣能實現(xiàn)數(shù)字地和模擬地之間的隔離。盡管這種方法可行,但是存在很多潛在的問題,在復(fù)雜的大型系統(tǒng)中問題尤其突出。最關(guān)鍵的問題是不能跨越分割間隙布線,一旦跨越了分割間隙布線,電磁輻射和信號串擾都會急劇增加。在PCB設(shè)計中最常見的問題就是信號線跨越分割地或電源而產(chǎn)生EMI問題。 如圖1所示,我們采用上述分割方法,而且信號線跨越了兩個地之間的間隙,信號電流的返回路徑是什么呢?假定被分割的兩個地在某處連接在一起(通常情況下是在某個位置單點連接),在這種情況下,地電流將會形成一個大的環(huán)路。流經(jīng)大環(huán)路的高頻電流會產(chǎn)生輻射和很高的地電感,如果流過大環(huán)路的是低電平模擬電流,該電流很容易受到外部信號干擾。最糟糕的是當把分割地在電源處連接在一起時,將形成一個非常大的電流環(huán)路。另外,模擬地和數(shù)字地通過一個長導(dǎo)線連接在一起會構(gòu)成偶極天線。

    標簽: 數(shù)字地 布線規(guī)則 模擬

    上傳時間: 2013-10-23

    上傳用戶:rtsm07

  • 信號完整性知識基礎(chǔ)(pdf)

    現(xiàn)代的電子設(shè)計和芯片制造技術(shù)正在飛速發(fā)展,電子產(chǎn)品的復(fù)雜度、時鐘和總線頻率等等都呈快速上升趨勢,但系統(tǒng)的電壓卻不斷在減小,所有的這一切加上產(chǎn)品投放市場的時間要求給設(shè)計師帶來了前所未有的巨大壓力。要想保證產(chǎn)品的一次性成功就必須能預(yù)見設(shè)計中可能出現(xiàn)的各種問題,并及時給出合理的解決方案,對于高速的數(shù)字電路來說,最令人頭大的莫過于如何確保瞬時跳變的數(shù)字信號通過較長的一段傳輸線,還能完整地被接收,并保證良好的電磁兼容性,這就是目前頗受關(guān)注的信號完整性(SI)問題。本章就是圍繞信號完整性的問題,讓大家對高速電路有個基本的認識,并介紹一些相關(guān)的基本概念。 第一章 高速數(shù)字電路概述.....................................................................................51.1 何為高速電路...............................................................................................51.2 高速帶來的問題及設(shè)計流程剖析...............................................................61.3 相關(guān)的一些基本概念...................................................................................8第二章 傳輸線理論...............................................................................................122.1 分布式系統(tǒng)和集總電路.............................................................................122.2 傳輸線的RLCG 模型和電報方程...............................................................132.3 傳輸線的特征阻抗.....................................................................................142.3.1 特性阻抗的本質(zhì).................................................................................142.3.2 特征阻抗相關(guān)計算.............................................................................152.3.3 特性阻抗對信號完整性的影響.........................................................172.4 傳輸線電報方程及推導(dǎo).............................................................................182.5 趨膚效應(yīng)和集束效應(yīng).................................................................................232.6 信號的反射.................................................................................................252.6.1 反射機理和電報方程.........................................................................252.6.2 反射導(dǎo)致信號的失真問題.................................................................302.6.2.1 過沖和下沖.....................................................................................302.6.2.2 振蕩:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分線的匹配.................................................................................392.6.3.4 多負載的匹配.................................................................................41第三章 串擾的分析...............................................................................................423.1 串擾的基本概念.........................................................................................423.2 前向串擾和后向串擾.................................................................................433.3 后向串擾的反射.........................................................................................463.4 后向串擾的飽和.........................................................................................463.5 共模和差模電流對串擾的影響.................................................................483.6 連接器的串擾問題.....................................................................................513.7 串擾的具體計算.........................................................................................543.8 避免串擾的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的產(chǎn)生..................................................................................................614.2.1 電壓瞬變.............................................................................................614.2.2 信號的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 電場屏蔽.........................................................................................654.3.1.2 磁場屏蔽.........................................................................................674.3.1.3 電磁場屏蔽.....................................................................................674.3.1.4 電磁屏蔽體和屏蔽效率.................................................................684.3.2 濾波.....................................................................................................714.3.2.1 去耦電容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 設(shè)計中的EMI.......................................................................................754.4.1 傳輸線RLC 參數(shù)和EMI ........................................................................764.4.2 疊層設(shè)計抑制EMI ..............................................................................774.4.3 電容和接地過孔對回流的作用.........................................................784.4.4 布局和走線規(guī)則.................................................................................79第五章 電源完整性理論基礎(chǔ)...............................................................................825.1 電源噪聲的起因及危害.............................................................................825.2 電源阻抗設(shè)計.............................................................................................855.3 同步開關(guān)噪聲分析.....................................................................................875.3.1 芯片內(nèi)部開關(guān)噪聲.............................................................................885.3.2 芯片外部開關(guān)噪聲.............................................................................895.3.3 等效電感衡量SSN ..............................................................................905.4 旁路電容的特性和應(yīng)用.............................................................................925.4.1 電容的頻率特性.................................................................................935.4.3 電容的介質(zhì)和封裝影響.....................................................................955.4.3 電容并聯(lián)特性及反諧振.....................................................................955.4.4 如何選擇電容.....................................................................................975.4.5 電容的擺放及Layout ........................................................................99第六章 系統(tǒng)時序.................................................................................................1006.1 普通時序系統(tǒng)...........................................................................................1006.1.1 時序參數(shù)的確定...............................................................................1016.1.2 時序約束條件...................................................................................1066.2 源同步時序系統(tǒng).......................................................................................1086.2.1 源同步系統(tǒng)的基本結(jié)構(gòu)...................................................................1096.2.2 源同步時序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由來...................................................................................... 1137.2 IBIS 與SPICE 的比較.............................................................................. 1137.3 IBIS 模型的構(gòu)成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相關(guān)工具及鏈接..............................................................................120第八章 高速設(shè)計理論在實際中的運用.............................................................1228.1 疊層設(shè)計方案...........................................................................................1228.2 過孔對信號傳輸?shù)挠绊?..........................................................................1278.3 一般布局規(guī)則...........................................................................................1298.4 接地技術(shù)...................................................................................................1308.5 PCB 走線策略............................................................................................134

    標簽: 信號完整性

    上傳時間: 2014-05-15

    上傳用戶:dudu1210004

主站蜘蛛池模板: 澄江县| 绥芬河市| 甘孜| 廉江市| 咸丰县| 泰顺县| 玛纳斯县| 锦屏县| 神池县| 雅江县| 四川省| 西盟| 延安市| 湘潭市| 盘山县| 滕州市| 辽阳县| 吉林市| 茌平县| 郯城县| 阳东县| 云安县| 巴南区| 盐亭县| 宾川县| 都兰县| 阿图什市| 武乡县| 新干县| 南涧| 吉安县| 巫溪县| 全椒县| 习水县| 镇赉县| 富裕县| 岳阳市| 松原市| 砀山县| 湟源县| 承德县|