變電站是電力系統的一個重要環節,它的運行情況直接影響到電力系統的可靠、經濟運行。一個變電站運行情況的優劣,在很大程度上取決于其二次設備的工作性能。現在的變電站有三種運行模式:一種是常規變電站,一種是部分實現微機管理、具有一定自動化水平的變電站,再有一種是實現無人值班、全面微機化的綜合自動化變電站。在常規變電站中,其繼電保護、中央信號系統、變送器、遠動及故障錄波裝置等所有二次設備都是采用傳統的分立式設備,而且站內配備大量控制、保護、記錄用屏盤。使裝備設置復雜,占地面積大,日常維護管理工作繁重。這種常規變電站的一個致命弱點是不具備自診斷能力,對二次系統本身的故障無法監測。因此,這種常規變電站已逐漸被淘汰。 要提高變電站運行的可靠性及經濟性,一個最有效的方法就是提高變電站運行管理的自動化水平,實現變電站的綜合自動化,以微機化的新型二次設備取代傳統使用的分立式設備。開發集保護、控制、監測及遠動等功能為一體的新型設備,并實現設備共享、信息資源共享,使變電站設計簡捷、布局緊湊,運行更加可靠安全。 隨著微型計算機技術、集成電路技術的迅速發展,原來越多的新技術和新產品應用到變電站的二次設備中去,使變電站的二次設備得到不斷的更新換代。該項研究把一種新型的低壓電能量測量芯片與高性能的數字信號處理器(DSP)結合起來,利用DSP體積小、功能強、功耗低、速度快、性價比高等優點,設計出新型的變電站線路測控單元,實現對高壓線路的測量、監視和控制,這種新型的二次設備比傳統的二次設備具有更高的精度和更快的相應速度。 與此同時,網絡理論和技術的發展,也使變電站監控系統的結構發生了很大的變化,由原來的集中控制型逐步過渡到功能分散、模塊化的分散網絡型,通過現場總線,使主控室和現場之間的聯系變成了串行通信聯系,從而提高的系統的可靠性和可維護性。CAN總線應用于變電站的監控系統中,組成變電站的數據通信網絡,可以提高系統的抗干擾能力和容錯能力。 該文就以上的兩個方面進行研究和設計,主要內容包括:一是在簡單介紹新型電能測量芯片和DSP的基本知識的基礎上,提出了一個變電站測控單元的設計方案,并從從硬件和軟件兩個方面進行了詳細的介紹,主要部分是對測量模塊的設計;二是系統的通信接口模塊設計,從硬件和軟件方面詳細的介紹了通信模塊的三種不同的通信接口的設計,分別是RS-232串行通信、RS-485總線通信、CAN總線通信;三是在分析現代測控系統發展歷史,指出了現場總線測控系統的優越性;四是設計出的測控系統單元的基礎上,利用CAN現場總線構建變電站的綜合監控系統。 該文提出的方案、技術以及結論對于變電站監控系統和自綜合動化系統的研究開發、工程設計都具有實際的參考意義。
上傳時間: 2013-04-24
上傳用戶:fhzm5658
永磁無刷直流電動機利用轉子上的永磁體激磁,采用電子換相取代機械換相,結構簡單、體積小、效率高,在許多領域得到了廣泛應用。但是,由于永磁無刷直流電動機本身存在較大的轉矩脈動,從而使電機運行性能存在缺陷,限制了它在精密傳動系統中的應用。本文在開發完成永磁無刷直流電動機控制系統的基礎上,針對如何減小和抑制自控式永磁電動機轉矩脈動這一問題,提出了一種混合控制策略:利用原有的六個離散位置信號,在三三導通控制策略的基礎上,融入矢量控制策略,使得電機在運行過程中定子的基波磁勢與轉子磁勢盡量保持在90°左右,來實現近似正弦波電流驅動,可以在不增加系統成本的基礎上,較好地抑制電磁轉矩脈動,并通過實驗驗證其正確性,其主要內容如下: 第二章主要闡述了永磁無刷直流電動機的運行原理,給出了電機的數學模型,在此基礎上,利用Matlab/Simulink軟件建立了電機及控制系統的仿真模型,并給出了仿真和實驗波形。 第三章介紹基于TI公司TMS320F240PQA芯片的永磁直流無刷電機控制器的設計,并對系統主電路、驅動模塊、電流檢測、過壓保護等電路作了詳細的介紹,對設計中容易出現的問題進行分析,搭建了整個系統的硬件平臺。 第四章介紹了常規的矢量控制技術,提出了一種混合控制策略的新方法:利用霍爾位置傳感器的六個位置信號,使得電機在運行過程中定子的基波磁勢與轉子磁勢盡量保持在90°左右,從而達到控制器簡單、轉矩脈動降低的目的。并分析了這種控制策略在勻速、加減速情況下的運行性能。 第五章在前幾章分析的基礎上,完整給出了混合控制策略的軟件編程方法,并按照模塊化的思想,把軟件分成多個獨立模塊,并重點介紹了系統啟動、轉速計算、轉子位置計算、sinθ和cosθ的計算、PWM輸出等幾個部分,并給出實驗波形驗證其可行性。
上傳時間: 2013-05-30
上傳用戶:時代將軍
感應電機雙饋調速系統是一種性能優越的電力拖動控制系統,它不僅降低了功率變換器的額定功率,而且能夠通過調節轉子電壓的幅值、相位和頻率來實現電機定子側功率因數的調節。由于系統控制方法的靈活性和多樣性,使得雙饋電機在工業傳動領域、風力發電以及抽水蓄能電站中擁有廣闊的應用前景。 本文主要對雙饋電機矢量控制系統進行了相關研究。首先,比較雙饋調速系統和傳統的異步電機變頻調速系統的異同點,闡述了雙饋電機的工作原理,各種不同的磁場定向控制方式,并分析了它的穩態特性;接著,利用雙饋調速系統控制方法靈活多樣的特點,構建了一套交直交變換器勵磁的矢量調速系統,系統模型建立在以轉子磁鏈定向了同步旋轉的坐標軸系中,可以實現雙饋電機轉速與無功功率的解耦控制,同時,控制交直交變換器能量的雙向流動,雙饋電機可以在超同步、亞同步方式下運行,通過計算機仿真,驗證了這種控制方式的可行性和正確性;隨后,闡述了雙饋電機的功角特性,通過功角特性分析了電機的靜態穩定性,并建立了雙饋電機的開環電壓控制、開環電流控制以及矢量控制的小信號模型,對上述幾種控制方式下的雙饋電機暫態穩定性進行了深入研究;最后,綜合上述討論結果,設計了雙饋電機的控制系統硬件部分,并給出了部分軟件設計流程。
上傳時間: 2013-07-25
上傳用戶:Wwill
隨著微電子技術、計算機技術、軟件技術以及網絡技術的高度發展及其在電子測控技術與儀器上的應用,新的測控理論、方法、測控領域以及新的儀器結構不斷的出現,在許多方面已經沖破儀器的概念,電子測控儀器的功能和作用發生了質的變化。在這種背景下,八十年代末美國成功開發了圖形化的計算機語言LabVIEW。 LabVIEW是美國NI公司實現虛擬儀器(VirtualInstrument-Ⅵ)技術的G語言。圖形化編程開發平臺的特點是基于通用計算機等標準軟硬件資源平臺,實現構建靈活、層次體系明晰、功能強大且人機界面友好的測控系統,因此在國內外許多測控應用中被廣泛采用,但目前用LabVIEW實現的應用大多是基于單機運行的LabVIEW虛擬儀器程序。 本論文介紹了小型電站中多個任務的實時測控系統。系統采用分布式控制系統結構,將人機交互、數據采集等任務和控制任務分別交由測試計算機和控制計算機完成。該測控系統計算機應用軟件是在LabVIEW平臺上開發,實現了友好的人機交互,簡單直觀的現場數據監控,安全可靠的故障處理措施等功能。這個實時系統對電機的多個開關量、模擬量、溫度信號、直流電動機和步進電動機等進行實時的數據采集和控制。 本設計通過基于優先級的設置和執行系統的選擇,結合固定時間間隔調度和事件驅動機制,提出了基于LabVIEW平臺測控系統的兩級多任務調度策略。這些設計方案大大提高了測控系統的性能。按照軟件工程學的觀點對實時多任務測控系統進行了方案設計;開發了操作簡單、界面友好、通用化程度高的測控系統。 本論文較全面系統深入地研究了LabVIEW的網絡化功能。系統分析了LabVIEW的TCP/IP、DataSocket和RemotePanels三種網絡通信機制,詳細討論了每種機制的原理及功能特點,并設計了相應的LabVIEW程序。實現了基于局域網的實時數據通信和遠程控制。 此外,為了結果查詢和數據分析,本課題還設計了用LabVIEW開發的數據庫。
上傳時間: 2013-05-15
上傳用戶:zukfu
超級電容器是一種介于電池和靜電電容之間的新型儲能元件,其功率密度比電池高數十倍,能量密度比靜電電容高數十倍。具有充放電速度快、對環境無污染、循環壽命長等優點,有希望成為21世紀的新型綠色能源。 設計了一個主回路以BUCK降壓電路為主,控制回路以單片機89C51為核心的超級電容器充放電測試系統,用于測試超級電容器充放電性能。本系統通過檢測超級電容器的端電壓、電流和溫度,并將采集到的信號由ADC0809轉換為數字信號,送入89C51分析處理后,再經DAC0832輸出,調節脈寬調制器TL494的電壓信號,調整PWM的輸出值,控制BUCK轉換電路中MOSFET功率開關的占空比,從而改變輸出直流電壓的大小,實現恒流控制。超級電容器充電方法采用分階段恒流充電,依照充電狀態的不同,適時調整充電電流大小,避免過充電造成超級電容器損害。在其控制方法和實現手段上,主要通過單片機的設定值與實測值的比較來控制電路的輸出,也可以通過模糊控制技術來實現,并用MATLAB進行了仿真實驗,仿真結果證明采用模糊控制能夠取得更好的效果。在整個系統的保護功能方面,采用了過壓、過流以及過熱等的保護方法,實現軟硬件對系統的保護。 利用本測試系統可以對超級電容器進行恒電流充放電,其充放電曲線基本上呈現線性。模糊控制能針對電容器充電狀態的不同,適時給予不同的充電電流,不至于發生大電流過充造成超級電容器受損的情況,確保使用壽命。 解決了系統的電磁兼容,從而能夠保證系統能夠安全可靠地工作。在電路裝置硬件電路、軟件以及印制電路板設計中所采取了一些抗干擾措施,可以有效地預防一些干擾帶來的誤差,提高了系統的可靠性和穩定性。
上傳時間: 2013-04-24
上傳用戶:Kecpolo
本文研究的電磁阻尼器是一種特殊結構的空心杯發電機,它主要用于對能量的吸收和耗散,達到減振消能的目的,是具有很高單位耗能的能量吸收元件。電磁阻尼器的應用十分廣泛,已涉及航天、航空、電力等諸多領域,有著廣闊的市場前景。 采用電磁場分析軟件建立了電磁阻尼器的仿真模型,仿真分析了電磁阻尼器阻尼力矩與定子、轉子結構參數的關系。 介紹了常規空心杯電機與電磁阻尼器的結構、發展和應用,基于Ansoft公司的電磁場分析軟件Maxwell 2D學生版軟件建立了電磁阻尼器靜磁場的二維仿真模型,分別對不同充磁方向、極弧系數、磁極對數的氣隙磁密分布進行了靜態仿真分析,得出了相應結論。在此基礎上,運用Infolytica公司的電磁場分析軟件MagNet對電磁阻尼器的二維穩態磁場進行了仿真,研究了如下內容: (1)定子磁路結構中的磁鋼材料、磁鋼充磁方向、定子磁極對數的改變對力矩特性的影響; (2) 轉子結構參數中的轉子長度、轉子材料、轉子厚度、轉子平均直徑、轉子轉向的改變對力矩特性的影響。根據所得的阻尼力矩仿真數據,基于Excel軟件的曲線擬合和Matlab軟件對擬合曲線進行的數值分析,求得了力矩特性斜率與上述參數的關系式。此關系式為探索電磁阻尼器的工程設計方法提供了一定理論依據,具有重要的工程應用價值。 最后,將仿真計算得到的阻尼力矩值與實驗測得的阻尼力矩值進行了對比,分析了誤差產生的原因。
上傳時間: 2013-04-24
上傳用戶:元宵漢堡包
近年來,人們對環境保護越來越重視,SF<,6>氣體的使用和排放受到限制,從而使電器領域內SF<,6>斷路器的發展也受到限制。而真空斷路器充分利用了真空優異的絕緣與熄弧特性,且對環境不造成污染,所以目前在中壓領域已經占據了主導地位,而且不斷向高電壓、大容量方向發展。因此,未來高壓真空斷路器必然取代高壓SF<,6>斷路器。真空滅弧室是真空斷路器的“心臟”,所以,開發高壓真空斷路器最關鍵的是滅弧室的設計。本文對110kV的真空滅弧室的內部電磁場進行了仿真分析,為我國開發110kV真空斷路器提供一定的參考。 本文采用有限元軟件對110kV真空斷路器滅弧室內部靜電場進行了仿真分析,得到了滅弧室內部各種屏蔽罩的大小、尺寸和位置對電場分布的影響;觸頭距離對滅弧室內部電場分布的影響;傘裙對滅弧室內部電場分布的影響。再根據等離子體和金屬蒸氣具有一定導電率的特點,從麥克斯韋基本方程出發,推導了滅弧室內部電場所滿足的計算方程,然后用有限元法對二維電場進行了求解。考慮到弧后粒子消散過程中,電極和懸浮導體表面會有帶電微粒的存在,又計算分析了帶電微粒對真空滅弧室電場分布的影響,進而提出了使滅弧室內部電場更加均勻的措施。 根據大電流真空電弧的物理模型,基于磁場對電流的作用力理論,計算分析了真空電弧自生磁場的收縮效應以及對分斷電弧的影響,得到了弧柱中自生磁場產生的電磁壓強分布,最后分析了外加縱向磁場分量對減小自生磁場收縮效應的作用。 建立了110kV、1/2線圈以及1/3線圈縱向磁場觸頭三維電極模型,并利用有限元法進行了三維靜磁場和渦流場仿真。得到了電流在峰值和過零時縱向磁場分別在觸頭片表面和觸頭間隙中心平面上的二維和三維分布,給出了這兩種觸頭在電流過零時縱向磁場滯后時間沿徑向路徑和軸向路徑的分布規律,最后還對這兩種觸頭的性能進行了比較。
上傳時間: 2013-07-09
上傳用戶:smthxt
勵磁調節系統是同步發電機的重要組成部分,對同步發電機乃至電力系統的安全穩定運行有著重要影響。隨著電力系統規模的不斷增大,系統結構和運行方式日趨復雜,對同步發電機勵磁控制系統運行的可靠性、穩定性、經濟性和靈活性提出了更高的要求。本文根據勵磁調節器的國內外發展趨勢,研究開發了以TMS320F2812芯片為控制核心的同步發電機DSP勵磁調節器。 本文首先介紹了數字勵磁的發展歷程、特點及應用范圍,然后介紹了同步發電機勵磁控制系統的國內外發展狀況及趨勢,提出了基于數字信號處理器 TMS320F2812 控制的絕緣柵雙極晶體管(IGBT)微機勵磁系統的結構和設計方案。 在詳細解釋功率器件 IGBT 和控制器件TMS320F2812芯片基礎上,提出了勵磁系統的主要硬件設計及軟件實現方法;完成了IGBT勵磁裝置主回路和 IGBT 保護及驅動單元的設計;進行調節器硬件設計,給出了硬件原理圖和軟件流程圖;利用TMS320F2812芯片強大的數據處理能力和豐富的片內外設和高速的實時處理能力,用單片系統結構實現了交流采樣、變速積分 PID控制算法、PWM功率調節和系統保護等功能。TMS320F2812芯片的引入,大大簡化了勵磁控制器的硬件結構,提高了勵磁系統的抗干擾能力和可靠性。 最后,為驗證所設計的勵磁調節器的有效性和控制效果,采用 MATLAB 中 SIMULINK 仿真平臺,設計了勵磁控制系統各環節的仿真模型。仿真結果表明,采用 TMS320F2812的同步發電機IGBT勵磁系統具有響應快速、調節靈敏、控制性能優良等特點。
上傳時間: 2013-07-29
上傳用戶:tb_6877751
隨著采煤自動化技術的發展,對煤礦井下供電系統可靠性、安全性和連續性的要求越來越高的要求,因此對礦用隔爆型高壓開關智能綜合保護系統的研究具有重要的理論和應用價值。隨著微機保護的發展,一些新的保護原理和方案,受到越來越多的關注,并逐步得到實際應用。然而這些新方法在改善保護性能的同時也對微機保護裝置的計算精度、速度和尋址空間等提出了更高的要求,因而也對構成微機保護裝置的硬件平臺提出了更高的要求。針對以上問題本文提出了一種新的微機保護設計方案,設計了一種基于DSP 和單片機雙CPU 結構的微機保護系統,并應用于高壓開關裝置當中DSP 作為主CPU 芯片主要完成數據采集、數據處理和保護等功能,8051 作為從CPU 主要完成鍵盤處理、液晶顯示處理和通訊等人機對話功能。此雙核結構具有并行工作,分工明確的優點,既保證了繼電保護的速動性,選擇性、靈敏性和可靠性,又實現了實施測量的高精度。 本文首先根據礦井高壓電網的實際情況,從理論上分析了礦井高壓電網常見故障的電氣特征,并參照相關標準制定了相應的保護原理和動作指標,尤其是針對礦井供電系統中普遍采用中性點不接地的情況,采用了“基于零序功率方向型”的選擇性漏電保護原理。然后分析了交流采樣、直流采樣方法的優缺點,確定了高壓防爆開關保護系統的采樣方式。 保護系統的硬件是實現保護原理的平臺,其穩定性和可靠性直接影響到保護功能的實現。本微機保護系統是基于DSP 和單片機的雙CPU 微機線路綜合保護測控裝置,DSP 的采用大大提高了保護裝置的數據處理速度,雙CPU 結構大大提高了裝置的可靠性。另外,該裝置不僅可以完成繼電保護功能,而且緊隨當前電力系統自動化發展的需要,還可以完成測量、控制、數據通訊的功能,亦即實現保護、控制、測量、數據通訊一體化。
上傳時間: 2013-05-17
上傳用戶:2007yqing
數控技術是20世紀制造技術取得重大成就之一,成為當代國際間科學競爭的重點,數控技術對現代制造業的影響是多方面的和重大的。制造業是各種產業的支柱工業,數控技術和數控裝備是制造業工業現代化的重要基礎,直接影響到一個國家的經濟發展和綜合國力。發展數控技術和數控機床是當前制造工業技術改造,技術更新的必由之路。數控機床的發展在很大程度上取決于數控系統的性能和水平,而數控系統的發展及其技術基礎離不開微電子技術和計算機技術。 插補控制功能是數控制造系統的一個重要組成部分,是數控技術中的核心技術。它的性能直接代表制造系統的先進程度,它的好壞直接影響著數控加工技術的優劣,是目前數控技術急需提高和完善的環節之一。 本論文首先對數控技術的發展史、數控技術特點、研究對象及發展趨勢等進行了概述,介紹了數控裝置的組成和工作過程,并闡述了論文的選題意義及研究內容。 其次,在分析傳統基準脈沖插補、數據采樣插補算法的基礎上,著重介紹了數控技術插補原理,并且對常用的插補方法進行分析和比較。 然后,在軟件技術方面詳細地分析了逐點比較法、數字積分法、最小偏差法等實用插補算法的組成和特點,重點論述了以上各種插補算法的軟件實現。在硬件技術方面,在研究硬件插補器的設計原理和實現技術的基礎上設計了DDA法直線和圓弧的硬件插補器,說明了它的工作原理。 最后,總結性地介紹了課題的主要工作、成果和對課題的展望。
標簽: 數控機床
上傳時間: 2013-04-24
上傳用戶:ardager