專輯類-國標類相關專輯-313冊-701M GB-T-249-1989-半導體分立器件型號命名方法.pdf
上傳時間: 2013-06-06
上傳用戶:徐孺
國標類相關專輯 313冊 701MGB-T 249-1989 半導體分立器件型號命名方法.pdf
標簽:
上傳時間: 2014-05-05
上傳用戶:時代將軍
GB T 6995.1-2008 電線電纜識別標志方法 第1部分:一般規定
上傳時間: 2017-05-06
上傳用戶:CCXZCCXZCCXZ
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-01-15
上傳用戶:hongmo
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2013-12-26
上傳用戶:dreamboy36
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2016-06-28
上傳用戶:change0329
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-09-03
上傳用戶:jjj0202
learningMatlab PhÇ n 1 c¬ së Mat lab Ch ¬ ng 1: Cµ i ® Æ t matlab 1.1.Cµ i ® Æ t ch ¬ ng tr×nh: Qui tr×nh cµ i ® Æ t Matlab còng t ¬ ng tù nh viÖ c cµ i ® Æ t c¸ c ch ¬ ng tr×nh phÇ n mÒ m kh¸ c, chØ cÇ n theo c¸ c h íng dÉ n vµ bæ xung thª m c¸ c th« ng sè cho phï hî p. 1.1.1 Khë i ® éng windows. 1.1.2 Do ch ¬ ng tr×nh ® î c cÊ u h×nh theo Autorun nª n khi g¾ n dÜ a CD vµ o æ ® Ü a th× ch ¬ ng tr×nh tù ho¹ t ® éng, cö a sæ
標簽: learningMatlab 172 199 173
上傳時間: 2013-12-20
上傳用戶:lanwei
_Wiley_Synthesis_of_Arithmetic_Circuits_-_FPGA_ASIC_and_Embedded_Systems_(2006)_-_DDU一些硬體設計教學文件
標簽: Wiley_Synthesis_of_Arithmetic_Cir FPGA_ASIC_and_Embedded_Systems cuits 2006
上傳時間: 2013-08-20
上傳用戶:lchjng
Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵,是使被記憶的模式樣本對應網絡能量函數的極小值。 設有M個N維記憶模式,通過對網絡N個神經元之間連接權 wij 和N個輸出閾值θj的設計,使得: 這M個記憶模式所對應的網絡狀態正好是網絡能量函數的M個極小值。 比較困難,目前還沒有一個適應任意形式的記憶模式的有效、通用的設計方法。 H網的算法 1)學習模式——決定權重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經元j、i間的權重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數 ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經元與第i個神經元間的權重 i = j時,wij=0,即各神經元的輸出不直接返回自身。 2)想起模式: 神經元輸出值的初始化 想起時,一般是未知的輸入。設xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應的神經元的初始值,其中,0意味t=0。 反復部分:對各神經元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經元總數 f()--Sgn() θi—神經元i發火閾值 反復進行,直到各個神經元的輸出不再變化。
上傳時間: 2015-03-16
上傳用戶:JasonC