求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2013-12-26
上傳用戶:dreamboy36
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2016-06-28
上傳用戶:change0329
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-09-03
上傳用戶:jjj0202
learningMatlab PhÇ n 1 c¬ së Mat lab Ch ¬ ng 1: Cµ i ® Æ t matlab 1.1.Cµ i ® Æ t ch ¬ ng tr×nh: Qui tr×nh cµ i ® Æ t Matlab còng t ¬ ng tù nh viÖ c cµ i ® Æ t c¸ c ch ¬ ng tr×nh phÇ n mÒ m kh¸ c, chØ cÇ n theo c¸ c h íng dÉ n vµ bæ xung thª m c¸ c th« ng sè cho phï hî p. 1.1.1 Khë i ® éng windows. 1.1.2 Do ch ¬ ng tr×nh ® î c cÊ u h×nh theo Autorun nª n khi g¾ n dÜ a CD vµ o æ ® Ü a th× ch ¬ ng tr×nh tù ho¹ t ® éng, cö a sæ
標簽: learningMatlab 172 199 173
上傳時間: 2013-12-20
上傳用戶:lanwei
Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵,是使被記憶的模式樣本對應網絡能量函數的極小值。 設有M個N維記憶模式,通過對網絡N個神經元之間連接權 wij 和N個輸出閾值θj的設計,使得: 這M個記憶模式所對應的網絡狀態正好是網絡能量函數的M個極小值。 比較困難,目前還沒有一個適應任意形式的記憶模式的有效、通用的設計方法。 H網的算法 1)學習模式——決定權重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經元j、i間的權重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數 ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經元與第i個神經元間的權重 i = j時,wij=0,即各神經元的輸出不直接返回自身。 2)想起模式: 神經元輸出值的初始化 想起時,一般是未知的輸入。設xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應的神經元的初始值,其中,0意味t=0。 反復部分:對各神經元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經元總數 f()--Sgn() θi—神經元i發火閾值 反復進行,直到各個神經元的輸出不再變化。
上傳時間: 2015-03-16
上傳用戶:JasonC
最小平方近似法 (least-squares approximation) 是用來求出一組離散 (discrete) 數據點的近似函數 (approximating function),作實驗所得的數據亦常使用最小平方近似法來達成曲線密合 (curve fitting)。以下所介紹的最小平方近似法是使用多項式作為近似函數,除了多項式之外,指數、對數方程式亦可作為近似函數。關於最小平方近似法的計算原理,請參閱市面上的數值分析書籍
標簽: least-squares approximation approximating discrete
上傳時間: 2015-06-21
上傳用戶:SimonQQ
circle detection using hough transform 作者:D J Kcrbywn and T J Atherton, University of Warwick, U.K.霍夫檢測圓的IEEE,1995的文章,對指導霍夫變換圓檢測的原理有一定的指導。
標簽: detection transform Atherton Kcrbywn
上傳時間: 2017-04-09
上傳用戶:yiwen213
開關電源基本原理與設計介紹 ppt
標簽: 開關電源
上傳時間: 2013-07-24
上傳用戶:eeworm
專輯類-開關電源相關專輯-119冊-749M 開關電源基本原理與設計介紹-62頁-2.3M-ppt.ppt
上傳時間: 2013-05-18
上傳用戶:lyy1234
針對空間電壓欠量脈寬調制過程中存在的問題,采用理論推演與軟件設計方法,在介紹了s V P w M 的基本原理的基礎上,利用T I 公司的 D S P電機控制芯片 T M S 3 2 0 L F 2 4 0 7設計了S V P W M的實現方法,并給出 j - 變頻調速系統的全數字化實現。 通過對永磁同步電機進行控制仿真實驗,得到的結果表明此方法是切實可行V , J ,控制系統具有優良的動靜態性能,較高的控制效果,有廣泛的應用前景。
上傳時間: 2013-04-24
上傳用戶:yxvideo