亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

統(tǒng)計(jì)原理

  • SDRAM的原理和時序

    SDRAM的原理和時序 SDRAM內存模組與基本結構 我們平時看到的SDRAM都是以模組形式出現,為什么要做成這種形式呢?這首先要接觸到兩個概念:物理Bank與芯片位寬。1、 物理Bank 傳統內存系統為了保證CPU的正常工作,必須一次傳輸完CPU在一個傳輸周期內所需要的數據。而CPU在一個傳輸周期能接受的數 據容量就是CPU數據總線的位寬,單位是bit(位)。當時控制內存與CPU之間數據交換的北橋芯片也因此將內存總線的數據位寬 等同于CPU數據總線的位寬,而這個位寬就稱之為物理Bank(Physical Bank,下文簡稱P-Bank)的位寬。所以,那時的內存必須要組織成P-Bank來與CPU打交道。資格稍老的玩家應該還記 得Pentium剛上市時,需要兩條72pin的SIMM才能啟動,因為一條72pin -SIMM只能提供32bit的位寬,不能滿足Pentium的64bit數據總線的需要。直到168pin-SDRAM DIMM上市后,才可以使用一條內存開機。不過要強調一點,P-Bank是SDRAM及以前傳統內存家族的特有概念,RDRAM中將以通道(Channel)取代,而對 于像Intel E7500那樣的并發式多通道DDR系統,傳統的P-Bank概念也不適用。2、 芯片位寬 上文已經講到SDRAM內存系統必須要組成一個P-Bank的位寬,才能使CPU正常工作,那么這個P-Bank位寬怎么得到呢 ?這就涉及到了內存芯片的結構。 每個內存芯片也有自己的位寬,即每個傳輸周期能提供的數據量。理論上,完全可以做出一個位寬為64bit的芯片來滿足P-Ban k的需要,但這對技術的要求很高,在成本和實用性方面也都處于劣勢。所以芯片的位寬一般都較小。臺式機市場所用的SDRAM芯片 位寬最高也就是16bit,常見的則是8bit。這樣,為了組成P-Bank所需的位寬,就需要多顆芯片并聯工作。對于16bi t芯片,需要4顆(4×16bit=64bit)。對于8bit芯片,則就需要8顆了。以上就是芯片位寬、芯片數量與P-Bank的關系。P-Bank其實就是一組內存芯片的集合,這個集合的容量不限,但這個集合的 總位寬必須與CPU數據位寬相符。隨著計算機應用的發展,

    標簽: SDRAM 時序

    上傳時間: 2013-11-04

    上傳用戶:zhuimenghuadie

  • 1-WCDMA無線基本原理-120

    關于3g無線網優的:WCDMA無線基本原理 課程目標: ? 掌握3G移動通信的基本概念 ? 掌握3G的標準化過程 ? 掌握WCDMA的基本網絡結構以及各網元功能 ? 掌握無線通信原理 ? 掌握WCDMA的關鍵技術 參考資料: ? 《3G概述與概況》 ? 《中興通訊WCDMA基本原理》 ? 《ZXWR RNC(V3.0)技術手冊》 ? 《ZXWR NB09技術手冊》 第1章 概述 1 1.1 移動通信的發展歷程 1 1.1.1 移動通信系統的發展 1 1.1.2 移動通信用戶及業務的發展 1 1.2 3G移動通信的概念 2 1.3 為什么要發展第三代移動通信 2 1.4 3G的標準化過程 3 1.4.1 標準組織 3 1.4.2 3G技術標準化 3 1.4.3 第三代的核心網絡 4 1.4.4 IMT-2000的頻譜分配 6 1.4.5 2G向3G移動通信系統演進 7 1.4.6 WCDMA核心網絡結構的演進 11 第2章 WCDMA系統介紹 13 2.1 系統概述 13 2.2 R99網元和接口概述 14 2.2.1 移動交換中心MSC 16 2.2.2 拜訪位置寄存器VLR 16 2.2.3 網關GMSC 16 2.2.4 GPRS業務支持節點SGSN 16 2.2.5 網關GPRS支持節點GGSN 17 2.2.6 歸屬位置寄存器與鑒權中心HLR/AuC 17 2.2.7 移動設備識別寄存器EIR 17 2.3 R4網絡結構概述 17 2.3.1 媒體網關MGW 19 2.3.2 傳輸信令網關T-SGW、漫游信令網關R-SGW 20 2.4 R5網絡結構概述 20 2.4.1 媒體網關控制器MGCF 22 2.4.2 呼叫控制網關CSCF 22 2.4.3 會議電話橋分MRF 22 2.4.4 歸屬用戶服務器HSS 22 2.5 UTRAN的一般結構 22 2.5.1 RNC子系統 23 2.5.2 Node B子系統 25 第3章 擴頻通信原理 27 3.1 擴頻通信簡介 27 3.1.1 擴頻技術簡介 27 3.1.2 擴頻技術的現狀 27 3.2 擴頻通信原理 28 3.2.1 擴頻通信的定義 29 3.2.2 擴頻通信的理論基礎 29 3.2.3 擴頻與解擴頻過程 30 3.2.4 擴頻增益和抗干擾容限 31 3.2.5 擴頻通信的主要特點 32 第4章 無線通信基礎 35 4.1 移動無線信道的特點 35 4.1.1 概述 35 4.1.2 電磁傳播的分析 37 4.2 編碼與交織 38 4.2.1 信道編碼 39 4.2.2 交織技術 42 4.3 擴頻碼與擾碼 44 4.4 調制 47 第5章 WCDMA關鍵技術 49 5.1 WCDMA系統的技術特點 49 5.2 功率控制 51 5.2.1 開環功率控制 51 5.2.2 閉環功率控制 52 5.2.3 HSDPA相關的功率控制 55 5.3 RAKE接收 57 5.4 多用戶檢測 60 5.5 智能天線 62 5.6 分集技術 64 第6章 WCDMA無線資源管理 67 6.1 切換 67 6.1.1 切換概述 67 6.1.2 切換算法 73 6.1.3 基于負荷控制原因觸發的切換 73 6.1.4 基于覆蓋原因觸發的切換 74 6.1.5 基于負荷均衡原因觸發的切換 77 6.1.6 基于移動臺移動速度的切換 79 6.2 碼資源管理 80 6.2.1 上行擾碼 80 6.2.2 上行信道化碼 83 6.2.3 下行擾碼 84 6.2.4 下行信道化碼 85 6.3 接納控制 89 6.4 負荷控制 95 第7章 信道 97 7.1 UTRAN的信道 97 7.1.1 邏輯信道 98 7.1.2 傳輸信道 99 7.1.3 物理信道 101 7.1.4 信道映射 110 7.2 初始接入過程 111 7.2.1 小區搜索過程 111 7.2.2 初始接入過程 112

    標簽: WCDMA 120 無線

    上傳時間: 2013-11-21

    上傳用戶:tdyoung

  • 基于T-S模糊模型的電液比例位置控制系統研究

    針對電液比例位置控制系統由于非線性和死區特性在實際控制中難以得到滿意的控制效果的現狀,本研究采用T-S模糊控制理論的原理設計了T-S模糊控制器對電液比例位置控制系統進行控制。并以Matlab為平臺進行了仿真實驗。仿真結果表明采用T-S模糊控制的電液比例位置控制系統具有較好的控制效果

    標簽: T-S 模糊模型 位置控制 電液比例

    上傳時間: 2013-11-13

    上傳用戶:daoxiang126

  • 基于激光掃描原理的路徑檢測方案

    j基于激光掃描原理的路徑檢測方案

    標簽: 激光掃描 方案 路徑檢測

    上傳時間: 2013-10-09

    上傳用戶:kr770906

  • Arduino學習筆記4_Arduino軟件模擬PWM

    注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言.      2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\   所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。

    標簽: Arduino PWM 軟件模擬

    上傳時間: 2013-10-08

    上傳用戶:dingdingcandy

  • Arduino學習筆記4_Arduino軟件模擬PWM

    注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言.      2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\   所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。

    標簽: Arduino PWM 軟件模擬

    上傳時間: 2013-10-23

    上傳用戶:mqien

  • 此為編譯原理實驗報告 學習消除文法左遞規算法

    此為編譯原理實驗報告 學習消除文法左遞規算法,了解消除文法左遞規在語法分析中的作用 內含 設計算法 目的 源碼 等等.... 算法:消除左遞歸算法為: (1)把文法G的所有非終結符按任一種順序排列成P1,P2,…Pn 按此順序執行 (2)FOR i:=1 TO n DO BEGIN FOR j:=1 DO 把形如Pi→Pjγ的規則改寫成 Pi→δ1γ δ2γ … δkγ。其中Pj→δ1 δ2 … δk是關于Pj的所有規則; 消除關于Pi規則的直接左遞歸性 END (3)化簡由(2)所得的文法。即去除那些從開始符號出發永遠無法到達的非終結符的 產生規則。

    標簽: 編譯原理 實驗報告 算法

    上傳時間: 2015-03-29

    上傳用戶:極客

  • 模擬退火算法來源于固體退火原理

    模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。

    標簽: 模擬退火算法

    上傳時間: 2015-04-24

    上傳用戶:R50974

  • 模擬退火算法來源于固體退火原理

    模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。

    標簽: 模擬退火算法

    上傳時間: 2015-04-24

    上傳用戶:ryb

  • 模擬退火算法來源于固體退火原理

    模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。

    標簽: 模擬退火算法

    上傳時間: 2014-12-19

    上傳用戶:TRIFCT

主站蜘蛛池模板: 揭东县| 长治市| 固镇县| 横峰县| 芦溪县| 胶南市| 政和县| 华亭县| 苍南县| 塔河县| 白朗县| 夹江县| 诸城市| 海安县| 阿克陶县| 盈江县| 十堰市| 虞城县| 东宁县| 开阳县| 永平县| 枣庄市| 芷江| 德庆县| 南溪县| 昭苏县| 河津市| 诸城市| 乌鲁木齐县| 正镶白旗| 穆棱市| 互助| 河间市| 颍上县| 金湖县| 津市市| 资源县| 台北市| 荆门市| 仁寿县| 丹江口市|