C和Cpp嵌入式系統編,C和Cpp嵌入式系統編
上傳時間: 2013-12-26
上傳用戶:dragonhaixm
用一個C語言來測試4X4按鍵功能是否正常工作
上傳時間: 2017-07-25
上傳用戶:宋桃子
一款類似百度知道系統的問題解答系統,問題頁面自動生成靜態網頁- M( ]- `+ X0 x 系統特色: + O$ U8 n- [ z# {/ E本系統結合了仿百度知道程序和仿新浪愛問程序的共同優點,設計更加合理 6 X) H8 a5 t9 h& D6 e8 S9 p2 P 問題頁面實時生成靜態頁面,減少系統開銷,更利于搜索引擎的收錄 ! f5 U& N3 J+ B7 I" S完美使用系統緩存,減少數據庫讀取次數 b T |, g1 v9 \" E* Z 完善的后臺管理功能 # u5 C: I- c$ P6 P( H9 S2 w支持問題的附件上傳 . U! K+ k ~) o 對搜索引擎的優化:支持Keywords和Description頁面頭部標簽的自定義 6 ^! h: m- U4 p( z# X支持 JS 代碼的問題調用 t8 E5 ]) b3 M8 x* z提供與動網、oblog、動易實現用戶整合的標準接口 ) {4 \ ` ]1 g1 F8 u
標簽: 百度
上傳時間: 2013-11-28
上傳用戶:ztj182002
一個好用的溫度顯示程序,c語言寫的簡單易懂。可以精確到0.1度,希望能給大家帶來方便。
上傳時間: 2017-09-01
上傳用戶:daguda
攝氏度轉換成華氏度,并且用一個布爾型開關控制不同的量綱
上傳時間: 2013-12-17
上傳用戶:1966640071
國標類相關專輯 313冊 701MGB-T 2471-1995 電阻器和電容器優先數系.pdf
標簽:
上傳時間: 2014-05-05
上傳用戶:時代將軍
國標類相關專輯 313冊 701MGB-T 11297.10-1989 熱釋電材料居里溫度 T@C 的測試方法.pdf
標簽:
上傳時間: 2014-05-05
上傳用戶:時代將軍
第1章 緒論 1 1.1 程序設計語言概述 1 1.1.1 機器語言 1 1.1.2 匯編語言 2 1.1.3 高級語言 2 1.1.4 C語言 3 1.2 C語言的優點和缺點 4 1.2.1 C語言的優點 4 1.2.2 C語言的缺點 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的復雜度 8 1.3.3 算法的準確性 10 1.3.4 算法的穩定性 14 第2章 復數運算 18 2.1 復數的四則運算 18 2.1.1 [算法1] 復數乘法 18 2.1.2 [算法2] 復數除法 20 2.1.3 【實例5】 復數的四則運算 22 2.2 復數的常用函數運算 23 2.2.1 [算法3] 復數的乘冪 23 2.2.2 [算法4] 復數的n次方根 25 2.2.3 [算法5] 復數指數 27 2.2.4 [算法6] 復數對數 29 2.2.5 [算法7] 復數正弦 30 2.2.6 [算法8] 復數余弦 32 2.2.7 【實例6】 復數的函數運算 34 第3章 多項式計算 37 3.1 多項式的表示方法 37 3.1.1 系數表示法 37 3.1.2 點表示法 38 3.1.3 [算法9] 系數表示轉化為點表示 38 3.1.4 [算法10] 點表示轉化為系數表示 42 3.1.5 【實例7】 系數表示法與點表示法的轉化 46 3.2 多項式運算 47 3.2.1 [算法11] 復系數多項式相乘 47 3.2.2 [算法12] 實系數多項式相乘 50 3.2.3 [算法13] 復系數多項式相除 52 3.2.4 [算法14] 實系數多項式相除 54 3.2.5 【實例8】 復系數多項式的乘除法 56 3.2.6 【實例9】 實系數多項式的乘除法 57 3.3 多項式的求值 59 3.3.1 [算法15] 一元多項式求值 59 3.3.2 [算法16] 一元多項式多組求值 60 3.3.3 [算法17] 二元多項式求值 63 3.3.4 【實例10】 一元多項式求值 65 3.3.5 【實例11】 二元多項式求值 66 第4章 矩陣計算 68 4.1 矩陣相乘 68 4.1.1 [算法18] 實矩陣相乘 68 4.1.2 [算法19] 復矩陣相乘 70 4.1.3 【實例12】 實矩陣與復矩陣的乘法 72 4.2 矩陣的秩與行列式值 73 4.2.1 [算法20] 求矩陣的秩 73 4.2.2 [算法21] 求一般矩陣的行列式值 76 4.2.3 [算法22] 求對稱正定矩陣的行列式值 80 4.2.4 【實例13】 求矩陣的秩和行列式值 82 4.3 矩陣求逆 84 4.3.1 [算法23] 求一般復矩陣的逆 84 4.3.2 [算法24] 求對稱正定矩陣的逆 90 4.3.3 [算法25] 求托伯利茲矩陣逆的Trench方法 92 4.3.4 【實例14】 驗證矩陣求逆算法 97 4.3.5 【實例15】 驗證T矩陣求逆算法 99 4.4 矩陣分解與相似變換 102 4.4.1 [算法26] 實對稱矩陣的LDL分解 102 4.4.2 [算法27] 對稱正定實矩陣的Cholesky分解 104 4.4.3 [算法28] 一般實矩陣的全選主元LU分解 107 4.4.4 [算法29] 一般實矩陣的QR分解 112 4.4.5 [算法30] 對稱實矩陣相似變換為對稱三對角陣 116 4.4.6 [算法31] 一般實矩陣相似變換為上Hessen-Burg矩陣 121 4.4.7 【實例16】 對一般實矩陣進行QR分解 126 4.4.8 【實例17】 對稱矩陣的相似變換 127 4.4.9 【實例18】 一般實矩陣相似變換 129 4.5 矩陣特征值的計算 130 4.5.1 [算法32] 求上Hessen-Burg矩陣全部特征值的QR方法 130 4.5.2 [算法33] 求對稱三對角陣的全部特征值 137 4.5.3 [算法34] 求對稱矩陣特征值的雅可比法 143 4.5.4 [算法35] 求對稱矩陣特征值的雅可比過關法 147 4.5.5 【實例19】 求上Hessen-Burg矩陣特征值 151 4.5.6 【實例20】 分別用兩種雅克比法求對稱矩陣特征值 152 第5章 線性代數方程組的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解復系數方程組的全選主元高斯消去法 155 5.1.2 [算法37] 求解實系數方程組的全選主元高斯消去法 160 5.1.3 [算法38] 求解復系數方程組的全選主元高斯-約當消去法 163 5.1.4 [算法39] 求解實系數方程組的全選主元高斯-約當消去法 168 5.1.5 [算法40] 求解大型稀疏系數矩陣方程組的高斯-約當消去法 171 5.1.6 [算法41] 求解三對角線方程組的追趕法 174 5.1.7 [算法42] 求解帶型方程組的方法 176 5.1.8 【實例21】 解線性實系數方程組 179 5.1.9 【實例22】 解線性復系數方程組 180 5.1.10 【實例23】 解三對角線方程組 182 5.2 矩陣分解法 184 5.2.1 [算法43] 求解對稱方程組的LDL分解法 184 5.2.2 [算法44] 求解對稱正定方程組的Cholesky分解法 186 5.2.3 [算法45] 求解線性最小二乘問題的QR分解法 188 5.2.4 【實例24】 求解對稱正定方程組 191 5.2.5 【實例25】 求解線性最小二乘問題 192 5.3 迭代方法 193 5.3.1 [算法46] 病態方程組的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德爾迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解對稱正定方程組的共軛梯度方法 205 5.3.6 [算法51] 求解托伯利茲方程組的列文遜方法 209 5.3.7 【實例26】 解病態方程組 214 5.3.8 【實例27】 用迭代法解方程組 215 5.3.9 【實例28】 求解托伯利茲方程組 217 第6章 非線性方程與方程組的求解 219 6.1 非線性方程求根的基本過程 219 6.1.1 確定非線性方程實根的初始近似值或根的所在區間 219 6.1.2 求非線性方程根的精確解 221 6.2 求非線性方程一個實根的方法 221 6.2.1 [算法52] 對分法 221 6.2.2 [算法53] 牛頓法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【實例29】 用對分法求非線性方程組的實根 232 6.2.6 【實例30】 用牛頓法求非線性方程組的實根 233 6.2.7 【實例31】 用插值法求非線性方程組的實根 235 6.2.8 【實例32】 用埃特金迭代法求非線性方程組的實根 237 6.3 求實系數多項式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【實例33】 用QR方法求解多項式的全部根 240 6.4 求非線性方程組一組實根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 擬牛頓法 244 6.4.3 【實例34】 用梯度法計算非線性方程組的一組實根 250 6.4.4 【實例35】 用擬牛頓法計算非線性方程組的一組實根 252 第7章 代數插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 線性插值 255 7.1.2 [算法60] 二次拋物線插值 256 7.1.3 [算法61] 全區間插值 259 7.1.4 【實例36】 拉格朗日插值 262 7.2 埃爾米特插值 263 7.2.1 [算法62] 埃爾米特不等距插值 263 7.2.2 [算法63] 埃爾米特等距插值 267 7.2.3 【實例37】 埃爾米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【實例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【實例39】 光滑插值 286 7.5 三次樣條插值 287 7.5.1 [算法68] 第一類邊界條件的三次樣條函數插值 287 7.5.2 [算法69] 第二類邊界條件的三次樣條函數插值 292 7.5.3 [算法70] 第三類邊界條件的三次樣條函數插值 296 7.5.4 【實例40】 樣條插值法 301 7.6 連分式插值 303 7.6.1 [算法71] 連分式插值 304 7.6.2 【實例41】 驗證連分式插值的函數 308 第8章 數值積分法 309 8.1 變步長求積法 310 8.1.1 [算法72] 變步長梯形求積法 310 8.1.2 [算法73] 自適應梯形求積法 313 8.1.3 [算法74] 變步長辛卜生求積法 316 8.1.4 [算法75] 變步長辛卜生二重積分方法 318 8.1.5 [算法76] 龍貝格積分 322 8.1.6 【實例42】 變步長積分法進行一重積分 325 8.1.7 【實例43】 變步長辛卜生積分法進行二重積分 326 8.2 高斯求積法 328 8.2.1 [算法77] 勒讓德-高斯求積法 328 8.2.2 [算法78] 切比雪夫求積法 331 8.2.3 [算法79] 拉蓋爾-高斯求積法 334 8.2.4 [算法80] 埃爾米特-高斯求積法 336 8.2.5 [算法81] 自適應高斯求積方法 337 8.2.6 【實例44】 有限區間高斯求積法 342 8.2.7 【實例45】 半無限區間內高斯求積法 343 8.2.8 【實例46】 無限區間內高斯求積法 345 8.3 連分式法 346 8.3.1 [算法82] 計算一重積分的連分式方法 346 8.3.2 [算法83] 計算二重積分的連分式方法 350 8.3.3 【實例47】 連分式法進行一重積分 354 8.3.4 【實例48】 連分式法進行二重積分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法進行一重積分 356 8.4.2 [算法85] 蒙特卡洛法進行二重積分 358 8.4.3 【實例49】 一重積分的蒙特卡洛法 360 8.4.4 【實例50】 二重積分的蒙特卡洛法 361 第9章 常微分方程(組)初值問題的求解 363 9.1 歐拉方法 364 9.1.1 [算法86] 定步長歐拉方法 364 9.1.2 [算法87] 變步長歐拉方法 366 9.1.3 [算法88] 改進的歐拉方法 370 9.1.4 【實例51】 歐拉方法求常微分方程數值解 372 9.2 龍格-庫塔方法 376 9.2.1 [算法89] 定步長龍格-庫塔方法 376 9.2.2 [算法90] 變步長龍格-庫塔方法 379 9.2.3 [算法91] 變步長基爾方法 383 9.2.4 【實例52】 龍格-庫塔方法求常微分方程的初值問題 386 9.3 線性多步法 390 9.3.1 [算法92] 阿當姆斯預報校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全區間積分的雙邊法 399 9.3.4 【實例53】 線性多步法求常微分方程組初值問題 401 第10章 擬合與逼近 405 10.1 一元多項式擬合 405 10.1.1 [算法95] 最小二乘擬合 405 10.1.2 [算法96] 最佳一致逼近的里米茲方法 412 10.1.3 【實例54】 一元多項式擬合 417 10.2 矩形區域曲面擬合 419 10.2.1 [算法97] 矩形區域最小二乘曲面擬合 419 10.2.2 【實例55】 二元多項式擬合 428 第11章 特殊函數 430 11.1 連分式級數和指數積分 430 11.1.1 [算法98] 連分式級數求值 430 11.1.2 [算法99] 指數積分 433 11.1.3 【實例56】 連分式級數求值 436 11.1.4 【實例57】 指數積分求值 438 11.2 伽馬函數 439 11.2.1 [算法100] 伽馬函數 439 11.2.2 [算法101] 貝塔函數 441 11.2.3 [算法102] 階乘 442 11.2.4 【實例58】 伽馬函數和貝塔函數求值 443 11.2.5 【實例59】 階乘求值 444 11.3 不完全伽馬函數 445 11.3.1 [算法103] 不完全伽馬函數 445 11.3.2 [算法104] 誤差函數 448 11.3.3 [算法105] 卡方分布函數 450 11.3.4 【實例60】 不完全伽馬函數求值 451 11.3.5 【實例61】 誤差函數求值 452 11.3.6 【實例62】 卡方分布函數求值 453 11.4 不完全貝塔函數 454 11.4.1 [算法106] 不完全貝塔函數 454 11.4.2 [算法107] 學生分布函數 457 11.4.3 [算法108] 累積二項式分布函數 458 11.4.4 【實例63】 不完全貝塔函數求值 459 11.5 貝塞爾函數 461 11.5.1 [算法109] 第一類整數階貝塞爾函數 461 11.5.2 [算法110] 第二類整數階貝塞爾函數 466 11.5.3 [算法111] 變型第一類整數階貝塞爾函數 469 11.5.4 [算法112] 變型第二類整數階貝塞爾函數 473 11.5.5 【實例64】 貝塞爾函數求值 476 11.5.6 【實例65】 變型貝塞爾函數求值 477 11.6 Carlson橢圓積分 479 11.6.1 [算法113] 第一類橢圓積分 479 11.6.2 [算法114] 第一類橢圓積分的退化形式 481 11.6.3 [算法115] 第二類橢圓積分 483 11.6.4 [算法116] 第三類橢圓積分 486 11.6.5 【實例66】 第一類勒讓德橢圓函數積分求值 490 11.6.6 【實例67】 第二類勒讓德橢圓函數積分求值 492 第12章 極值問題 494 12.1 一維極值求解方法 494 12.1.1 [算法117] 確定極小值點所在的區間 494 12.1.2 [算法118] 一維黃金分割搜索 499 12.1.3 [算法119] 一維Brent方法 502 12.1.4 [算法120] 使用一階導數的Brent方法 506 12.1.5 【實例68】 使用黃金分割搜索法求極值 511 12.1.6 【實例69】 使用Brent法求極值 513 12.1.7 【實例70】 使用帶導數的Brent法求極值 515 12.2 多元函數求極值 517 12.2.1 [算法121] 不需要導數的一維搜索 517 12.2.2 [算法122] 需要導數的一維搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共軛梯度法 525 12.2.5 [算法125] 準牛頓法 531 12.2.6 【實例71】 驗證不使用導數的一維搜索 536 12.2.7 【實例72】 用Powell算法求極值 537 12.2.8 【實例73】 用共軛梯度法求極值 539 12.2.9 【實例74】 用準牛頓法求極值 540 12.3 單純形法 542 12.3.1 [算法126] 求無約束條件下n維極值的單純形法 542 12.3.2 [算法127] 求有約束條件下n維極值的單純形法 548 12.3.3 [算法128] 解線性規劃問題的單純形法 556 12.3.4 【實例75】 用單純形法求無約束條件下N維的極值 568 12.3.5 【實例76】 用單純形法求有約束條件下N維的極值 569 12.3.6 【實例77】 求解線性規劃問題 571 第13章 隨機數產生與統計描述 574 13.1 均勻分布隨機序列 574 13.1.1 [算法129] 產生0到1之間均勻分布的一個隨機數 574 13.1.2 [算法130] 產生0到1之間均勻分布的隨機數序列 576 13.1.3 [算法131] 產生任意區間內均勻分布的一個隨機整數 577 13.1.4 [算法132] 產生任意區間內均勻分布的隨機整數序列 578 13.1.5 【實例78】 產生0到1之間均勻分布的隨機數序列 580 13.1.6 【實例79】 產生任意區間內均勻分布的隨機整數序列 581 13.2 正態分布隨機序列 582 13.2.1 [算法133] 產生任意均值與方差的正態分布的一個隨機數 582 13.2.2 [算法134] 產生任意均值與方差的正態分布的隨機數序列 585 13.2.3 【實例80】 產生任意均值與方差的正態分布的一個隨機數 587 13.2.4 【實例81】 產生任意均值與方差的正態分布的隨機數序列 588 13.3 統計描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同時的t分布檢驗 591 13.3.3 [算法137] 方差不同時的t分布檢驗 594 13.3.4 [算法138] 方差的F檢驗 596 13.3.5 [算法139] 卡方檢驗 599 13.3.6 【實例82】 計算隨機樣本的矩 601 13.3.7 【實例83】 t分布檢驗 602 13.3.8 【實例84】 F分布檢驗 605 13.3.9 【實例85】 檢驗卡方檢驗的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序數組的二分查找 609 14.1.2 [算法141] 無序數組同時查找最大和最小的元素 611 14.1.3 [算法142] 無序數組查找第M小的元素 613 14.1.4 【實例86】 基本查找 615 14.2 結構體和磁盤文件的查找 617 14.2.1 [算法143] 無序結構體數組的順序查找 617 14.2.2 [算法144] 磁盤文件中記錄的順序查找 618 14.2.3 【實例87】 結構體數組和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函數 622 14.3.2 [算法146] 哈希函數 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中刪除元素 631 14.3.6 【實例88】 構造哈希表并進行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希爾排序 637 15.1.3 【實例89】 插入排序 639 15.2 交換排序 641 15.2.1 [算法152] 氣泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【實例90】 交換排序 644 15.3 選擇排序 646 15.3.1 [算法154] 直接選擇排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【實例91】 選擇排序 650 15.4 線性時間排序 651 15.4.1 [算法156] 計數排序 651 15.4.2 [算法157] 基數排序 653 15.4.3 【實例92】 線性時間排序 656 15.5 歸并排序 657 15.5.1 [算法158] 二路歸并排序 658 15.5.2 【實例93】 二路歸并排序 660 第16章 數學變換與濾波 662 16.1 快速傅里葉變換 662 16.1.1 [算法159] 復數據快速傅里葉變換 662 16.1.2 [算法160] 復數據快速傅里葉逆變換 666 16.1.3 [算法161] 實數據快速傅里葉變換 669 16.1.4 【實例94】 驗證傅里葉變換的函數 671 16.2 其他常用變換 674 16.2.1 [算法162] 快速沃爾什變換 674 16.2.2 [算法163] 快速哈達瑪變換 678 16.2.3 [算法164] 快速余弦變換 682 16.2.4 【實例95】 驗證沃爾什變換和哈達瑪的函數 684 16.2.5 【實例96】 驗證離散余弦變換的函數 687 16.3 平滑和濾波 688 16.3.1 [算法165] 五點三次平滑 689 16.3.2 [算法166] α-β-γ濾波 690 16.3.3 【實例97】 驗證五點三次平滑 692 16.3.4 【實例98】 驗證α-β-γ濾波算法 693
標簽: C 算法 附件 源代碼
上傳時間: 2015-06-29
上傳用戶:cbsdukaf
C#實現的圖像的灰度化程序,學習圖像處理相關的知識的可以下下來看一下,很基礎但是很有用。
上傳時間: 2016-06-16
上傳用戶:yangyatou
神經網絡在智能機器人導航系統中的應用研究1神經網絡在環境感知中的應 用 對環境 的感 知 ,環境模型 妁表示 是非常重要 的。未 知 環境中的障礙物的幾何形狀是不確定的,常用的表示方浩是 槽格法。如果用冊格法表示范圍較大的工作環境,在滿足 精度要求 的情況下,必定要占用大量的內存,并且采用柵 格法進行路徑規劃,其計算量是相當大的。Kohon~n自組織 神經瞬絡為機器人對未知環境的蒜知提供了一條途徑。 Kohone~沖經網絡是一十自組織神經網絡,其學習的結 果能體現出輸入樣本的分布情況,從而對輸入樣本實現數 據壓縮 。基于 網絡 的這些特 性,可采 用K0h0n曲 神經元 的 權向量來表示 自由空間,其方法是在 自由空間中隨機地選 取坐標點xltl【可由傳感器獲得】作為網絡輸入,神經嘲絡通 過對大量的輸八樣本的學習,其神經元就會體現出一定的 分布形 式 學習過程如下:開 始時網絡的權值隨機地賦值 , 其后接下式進行學 習: , 、 Jm(,)+叫f)f,)一珥ff)) ∈N,(f) (,) VfeN.(f1 其 中M(f1:神經元 1在t時刻對 應的權值 ;a(∽ 謂整系 數 ; (『l網絡的輸八矢量;Ⅳ():學習的 I域。每個神經元能最 大限度 地表示一 定 的自由空間 。神經 元權 向量的最 小生成 樹可以表示出自由空問的基本框架。網絡學習的鄰域 (,) 可 以動 態地 定義 成矩形 、多邊 形 。神經 元數量 的選取取 決 于環境 的復雜度 ,如果神 經元 的數量 太少 .它們就 不能 覆 蓋整十空間,結果會導致節點穿過障礙物區域 如果節點 妁數量太大 .節點就會表示更多的區域,也就得不到距障 礙物的最大距離。在這種情況下,節點是對整個 自由空間 的學 習,而不是 學習最 小框架空 間 。節 點的數 量可 以動態 地定義,在每個學習階段的結柬.機器人會檢查所有的路 徑.如檢鍘刊路徑上有障礙物 ,就意味著沒有足夠的節點 來 覆蓋整 十 自由窯 間,需要增加 網絡節點來 重新學 習 所 138一 以為了收斂于最小框架表示 ,應該采用較少的網絡 節點升 始學習,逐步增加其數量。這種方法比較適臺對擁擠的'E{= 境的學習,自由空間教小,就可用線段表示;若自由空問 較大,就需要由二維結構表示 。 采用Kohonen~沖經阿絡表示環境是一個新的方法。由 于網絡的并行結構,可在較短的時間內進行大量的計算。并 且不需要了解障礙物的過細信息.如形狀、位置等 通過 學習可用樹結構表示自由空問的基本框架,起、終點問路 徑 可利用樹的遍 歷技術報容易地被找到 在機器人對環境的感知的過程中,可采用人】:神經嘲 絡技術對 多傳 感器的信息進 行融臺 。由于單個傳感器僅能 提 供部分不 完全 的環境信息 ,因此只有秉 甩 多種傳感器 才 能提高機器凡的感知能力。 2 神經 網絡在局部路徑規射中的應 用 局部路徑 規刪足稱動吝避碰 規劃 ,足以全局規荊為指 導 利用在線得到的局部環境信息,在盡可能短的時問內
上傳時間: 2022-02-12
上傳用戶:qingfengchizhu