亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

小波函數(shù)(shù)

  • 小波閾值去噪法在MEMS陀螺儀信號(hào)降噪中的應(yīng)用

    · 摘要:  通過分析小波分析法中的閾值去噪算法的原理,根據(jù)MEMS陀螺儀信號(hào)漂移的數(shù)學(xué)模型,采用了基于小波閾值去噪法對(duì)MEMS陀螺儀的輸出進(jìn)行實(shí)時(shí)消噪處理.并將該算法應(yīng)用到基于DSP的某MEMS陀螺捷聯(lián)慣導(dǎo)系統(tǒng)后對(duì)系統(tǒng)的MEMS陀螺儀進(jìn)行零漂試驗(yàn).通過整個(gè)系統(tǒng)試驗(yàn)結(jié)果分析,使用小波閾值去噪法對(duì)抑制MEMS陀螺儀零漂,改善MEMS陀螺儀的零偏穩(wěn)定性具有很好的效果,肯定了小波閾值去

    標(biāo)簽: MEMS 小波閾值 去噪 信號(hào)降噪

    上傳時(shí)間: 2013-04-24

    上傳用戶:xiehao13

  • 小波閾值圖像去噪算法及MATLAB仿真實(shí)驗(yàn)

    ·摘 要:本文研究了小波閩值圖像的去噪方法,并與其它圖像去噪方法進(jìn)行了比較。對(duì)lena圖像進(jìn)行MATLAB仿真實(shí)驗(yàn),得到了主觀效果圖和客觀效果的PSNR。研究發(fā)現(xiàn),小波閾值圖像去噪無論主觀效果還是客觀效果都優(yōu)于其他圖像去噪方法。[著者文摘] 

    標(biāo)簽: MATLAB 小波閾值 圖像去噪算法 仿真實(shí)驗(yàn)

    上傳時(shí)間: 2013-06-04

    上傳用戶:BIBI

  • 用OpenCV實(shí)現(xiàn)的圖像小波變換及反變換代碼

    ·詳細(xì)說明:用OpenCV實(shí)現(xiàn)的圖像小波變換及反變換代碼,可用于圖像去噪、多分辨率分析等方面。

    標(biāo)簽: OpenCV 圖像 變換 代碼

    上傳時(shí)間: 2013-06-24

    上傳用戶:a296386173

  • 基于小波變換的改進(jìn)影像金字塔模型

      隨著遙感影像數(shù)據(jù)量不斷增長,為了更加高效地組織與管理海量的遙感影像,研究并提出了改進(jìn)的基于小波分解的影像金字塔構(gòu)建方法。利用多分辨率分析和圖像的小波分解與重構(gòu)算法,參考影像金字塔構(gòu)建的一般方法,將圖像小波分解的不同級(jí)系數(shù)量化、編碼后,分別存儲(chǔ)于金字塔的不同層中。該構(gòu)建方法可以有效地降低金字塔各層之間的數(shù)據(jù)冗余,減少總數(shù)據(jù)量和瀏覽時(shí)的數(shù)據(jù)流量,并能更好地支持嵌入式碼流和漸進(jìn)式傳輸。

    標(biāo)簽: 小波變換 金字塔模型

    上傳時(shí)間: 2013-10-20

    上傳用戶:1477849018@qq.com

  • 基于分塊的多尺度小波頻域數(shù)字水印

    數(shù)字水印是數(shù)字信息安全領(lǐng)域研究的一個(gè)熱點(diǎn)。小波變換算法以其多分辨率分析的特性在應(yīng)用數(shù)學(xué)方面取得了一定的發(fā)展。文中結(jié)合小波算法,在數(shù)字圖像的低頻域中采用分塊方法來嵌入數(shù)字水印,改進(jìn)了小波多尺度分解算法,通過實(shí)驗(yàn)說明,該數(shù)字水印算法對(duì)數(shù)字水印的穩(wěn)定性效果明顯

    標(biāo)簽: 分塊 多尺度 頻域 數(shù)字水印

    上傳時(shí)間: 2013-11-08

    上傳用戶:199311

  • 基于小波分析的低截獲信號(hào)檢測(cè)方法研究

    在魚雷技術(shù)發(fā)展中,低截獲概率技術(shù)(LPI)的采用大大提高魚雷的作戰(zhàn)能力,同時(shí)也對(duì)截獲信號(hào)提出了更高的要求。本文將基于小波分析的檢測(cè)方法,具體對(duì)有效的低截獲特征信號(hào)信號(hào)進(jìn)行檢測(cè),相比于短時(shí)傅里葉變換的基礎(chǔ)上,采用Daubechies5小波對(duì)信號(hào)進(jìn)行分解變換,證明小波分析方法的有效性及優(yōu)越性。

    標(biāo)簽: 小波分析 信號(hào)檢測(cè) 方法研究

    上傳時(shí)間: 2013-10-22

    上傳用戶:lht618

  • 基于小波與LS-SVM集成的模擬電路故障檢測(cè)

    由于模擬電路的多樣性、非線性和離散性等特點(diǎn),模擬電路的故障診斷呈現(xiàn)復(fù)雜、難以辨識(shí)等問題。針對(duì)已有方法的數(shù)據(jù)不平衡,提出了一種支持向量機(jī)集成的故障診斷方法。使用小波變換方法提取特征向量,在多類別支持向量機(jī)的基礎(chǔ)上,設(shè)計(jì)了模擬電路的最小二乘支持向量機(jī)預(yù)測(cè)模型,實(shí)現(xiàn)了對(duì)模擬電路的狀態(tài)的故障預(yù)測(cè)。將該方法應(yīng)用于Sallen-Key帶通電路進(jìn)行故障預(yù)測(cè)試驗(yàn),結(jié)果表明,該方法比單一支持向量機(jī)、徑向基神經(jīng)網(wǎng)絡(luò)、BP神經(jīng)網(wǎng)絡(luò)和APSVM有更好的分類和泛化性能,故障診斷準(zhǔn)確率更高。

    標(biāo)簽: LS-SVM 集成 模擬電路 故障檢測(cè)

    上傳時(shí)間: 2013-10-31

    上傳用戶:417313137

  • 小波分析在信號(hào)降噪中的應(yīng)用

    針對(duì)信號(hào)檢測(cè)中經(jīng)常存在的噪聲污染問題,利用小波分解之后可以在各個(gè)層次選擇閾值,對(duì)噪聲成分進(jìn)行抑制,手段更加靈活。本文介紹了小波變換的一般理論以及在信號(hào)降噪中的應(yīng)用,分析了被噪聲污染后的信號(hào)的特性;利用MATLAB軟件進(jìn)行了信號(hào)降噪的模擬仿真實(shí)驗(yàn)并在降噪光滑性和相似性兩個(gè)方面體現(xiàn)出小波變換的優(yōu)勢(shì)。本文分別使用了不同類型的小波和相同類型小波下不同閾值對(duì)信號(hào)進(jìn)行了降噪.仿真結(jié)果表明小波變換具有良好降噪的效果。

    標(biāo)簽: 小波分析 信號(hào)降噪 中的應(yīng)用

    上傳時(shí)間: 2013-10-19

    上傳用戶:alex wang

  • 基于仿生小波變換和模糊推理的語音降噪算法研究

    提出了一種基于仿生小波變換和模糊推理的變步長自適應(yīng)濾波語音降噪算法。該算法首先用仿生小波變換法對(duì)包含噪聲的語音信號(hào)進(jìn)行小波分解,以分離出來的噪聲信號(hào)作為自適應(yīng)濾波器的輸入,選擇基于模糊推理變步長自適應(yīng)算法對(duì)帶噪聲語音信號(hào)進(jìn)行降噪處理,最終實(shí)現(xiàn)語音信號(hào)的信噪分離,去除語音信號(hào)中的噪聲。仿真結(jié)果表明,該方法對(duì)語音信號(hào)有較為明顯的降噪效果。

    標(biāo)簽: 仿生 小波變換 模糊推理 語音降噪

    上傳時(shí)間: 2013-10-14

    上傳用戶:戀天使569

  • 基于小波分析的腦電信號(hào)處理

    為去除腦電信號(hào)采集過程中存在的噪聲信號(hào),提出了基于小波閾值去噪的腦電信號(hào)去噪。以小波閾值降噪為基礎(chǔ),首先利用db4小波對(duì)腦電信號(hào)進(jìn)行5尺度分解,然后采用軟、硬閾值與小波重構(gòu)的算法進(jìn)行去噪。通過對(duì)MIT腦電數(shù)據(jù)庫中的腦電信號(hào)進(jìn)行仿真,結(jié)果表明,采用軟閾值方法有效去除了噪聲,提高了腦電信號(hào)的信噪比。

    標(biāo)簽: 小波分析 腦電信號(hào)

    上傳時(shí)間: 2014-12-23

    上傳用戶:如果你也聽說

主站蜘蛛池模板: 嘉善县| 乐平市| 延寿县| 武邑县| 光山县| 碌曲县| 淄博市| 常宁市| 蛟河市| 南靖县| 肇东市| 长垣县| 沈阳市| 射阳县| 隆化县| 乃东县| 姜堰市| 行唐县| 北碚区| 西丰县| 梁平县| 临泽县| 维西| 南昌县| 新巴尔虎左旗| 三台县| 昌吉市| 林西县| 萨嘎县| 思茅市| 禹州市| 会同县| 香港 | 息烽县| 潮安县| 明光市| 二手房| 沾化县| 灵石县| 托克托县| 邵武市|