電梯的開關門過程是一個變速運動過程 ,需要對電梯門系統的驅動電機進行調速控制;本文提出了一種以高性能單片微機87C196MC 為核心的電梯門機變頻調速控制系統,功率驅動電路采用驅動MOSFET 的專用集成電路IR2130;分析了基于PWM 技術控制電梯門機運行的方法;采用單片微機和功率驅動專用集成電路將門系統電機的交流變頻器和驅動控制器集為一體,得到了一種可靠性高、控制靈活、成本低、體積小的電梯門機控制器。關鍵字:變頻器;正弦脈寬調制;電梯門機系統 電梯的門機系統是電梯的一個非常重要的子系統。門機系統性能的優劣直接關系著整個電梯系統能否正常地運行。所以說,對門機系統的設計開發及制造是電梯系統設計開發及制造的一個關鍵環節。從控制這個角度來說,研究的重點應側重于如何把先進的變頻調速技術應用到門機系統中,使門機系統能高效經濟可靠地運行。在目前的工程實踐中,交流電機的變頻調速策略主要有兩種方法,即正弦脈寬調制方法(SPWM)和空間矢量脈寬調制方法(SVPWM)。其中SPWM 的基本原理就是用正弦波和高頻三角載波比較產生PWM 脈沖序列:當基波(正弦波)高于三角載波時,相應的開關器件導通,反之,當基波低于三角載波時,相應的開關器件截止。產生的PWM 脈沖序列作為逆變器功率開關器件的驅動控制信號。本電梯門機變頻調速系統就是采用SPWM 調制方法,采用INTEL 公司的16 位高性能微控制器87C196MC 作為核心控制芯片,由87C196MC 的PWM 波形發生模塊產生PWM 信號去驅動功率電路,從而帶動門機按照預先設定的運行曲線運行。
上傳時間: 2013-10-16
上傳用戶:zhaoman32
SPMC75低功耗操作:本應用例介紹如何設置使SPMC75F2413A進入節電模式。1.2 模式簡介SPMC75F2413A有標準模式和兩種節電模式(等待模式和就緒模式),相應功能如下: 標準模式(Normal)芯片在標準模式下運行耗電最大,所有的外設都可用。 等待模式(Wait)等待模式下,只有CPU掉電停止工作以降低功耗。其它外設保持著先前的狀態并且功能可用。一旦喚醒,CPU將繼續工作,執行接下去的指令。 就緒模式(Standby)就緒模式下所有的模塊都變為無效,此時功耗達到最小。喚醒后,CPU復位并回到標準運行模式。其它外設可以通過軟件分別設置關閉。就緒模式下所有功能都會關閉,只有系統時鐘仍在工作。如果按鍵喚醒功能為有效,這兩種模式都可以通過按鍵喚醒。具體喚醒源的分類及喚醒功能的介紹請參考《SPMC75F2413A編程指南》。【注意】如果MCP定時器3或定時器4已經處于PWM輸出模式時,芯片不會進入等待或就緒模式。同樣在仿真模式下也無法進入等待或就緒模式。
上傳時間: 2013-11-20
上傳用戶:ming52900
用單片機AT89C51改造普通雙桶洗衣機:AT89C2051作為AT89C51的簡化版雖然去掉了P0、P2等端口,使I/O口減少了,但是卻增加了一個電壓比較器,因此其功能在某些方面反而有所增強,如能用來處理模擬量、進行簡單的模數轉換等。本文利用這一功能設計了一個數字電容表,可測量容量小于2微法的電容器的容量,采用3位半數字顯示,最大顯示值為1999,讀數單位統一采用毫微法(nf),量程分四檔,讀數分別乘以相應的倍率。電路工作原理 本數字電容表以電容器的充電規律作為測量依據,測試原理見圖1。電源電路圖。 壓E+經電阻R給被測電容CX充電,CX兩端原電壓隨充電時間的增加而上升。當充電時間t等于RC時間常數τ時,CX兩端電壓約為電源電壓的63.2%,即0.632E+。數字電容表就是以該電壓作為測試基準電壓,測量電容器充電達到該電壓的時間,便能知道電容器的容量。例如,設電阻R的阻值為1千歐,CX兩端電壓上升到0.632E+所需的時間為1毫秒,那么由公式τ=RC可知CX的容量為1微法。 測量電路如圖2所示。A為AT89C2051內部構造的電壓比較器,AT89C2051 圖2 的P1.0和P1.1口除了作I/O口外,還有一個功能是作為電壓比較器的輸入端,P1.0為同相輸入端,P1.1為反相輸入端,電壓比較器的比較結果存入P3.6口對應的寄存器,P3.6口在AT89C2051外部無引腳。電壓比較器的基準電壓設定為0.632E+,在CX兩端電壓從0升到0.632E+的過程中,P3.6口輸出為0,當電池電壓CX兩端電壓一旦超過0.632E+時,P3.6口輸出變為1。以P3.6口的輸出電平為依據,用AT89C2051內部的定時器T0對充電時間進行計數,再將計數結果顯示出來即得出測量結果。整機電路見圖3。電路由單片機電路、電容充電測量電路和數碼顯示電路等 圖3 部分組成。AT89C2051內部的電壓比較器和電阻R2-R7等組成測量電路,其中R2-R5為量程電阻,由波段開關S1選擇使用,電壓比較器的基準電壓由5V電源電壓經R6、RP1、R7分壓后得到,調節RP1可調整基準電壓。當P1.2口在程序的控制下輸出高電平時,電容CX即開始充電。量程電阻R2-R5每檔以10倍遞減,故每檔顯示讀數以10倍遞增。由于單片機內部P1.2口的上拉電阻經實測約為200K,其輸出電平不能作為充電電壓用,故用R5兼作其上拉電阻,由于其它三個充電電阻和R5是串聯關系,因此R2、R3、R4應由標準值減去1K,分別為999K、99K、9K。由于999K和1M相對誤差較小,所以R2還是取1M。數碼管DS1-DS4、電阻R8-R14等組成數碼顯示電路。本機采用動態掃描顯示的方式,用軟件對字形碼譯碼。P3.0-P3.5、P3.7口作數碼顯示七段筆劃字形碼的輸出,P1.3-P1.6口作四個數碼管的動態掃描位驅動碼輸出。這里采用了共陰數碼管,由于AT89C2051的P1.3-P1.6口有25mA的下拉電流能力,所以不用三極管就能驅動數碼管。R8-R14為P3.0-P3.5、P3.7口的上拉電阻,用以驅動數碼管的各字段,當P3的某一端口輸出低電平時其對應的字段筆劃不點亮,而當其輸出高電平時,則對應的上拉電阻即能點亮相應的字段筆劃。
上傳時間: 2013-12-31
上傳用戶:ming529
PC機之間串口通信的實現一、實驗目的 1.熟悉微機接口實驗裝置的結構和使用方法。 2.掌握通信接口芯片8251和8250的功能和使用方法。 3.學會串行通信程序的編制方法。 二、實驗內容與要求 1.基本要求主機接收開關量輸入的數據(二進制或十六進制),從鍵盤上按“傳輸”鍵(可自行定義),就將該數據通過8251A傳輸出去。終端接收后在顯示器上顯示數據。具體操作說明如下:(1)出現提示信息“start with R in the board!”,通過調整乒乓開關的狀態,設置8位數據;(2)在小鍵盤上按“R”鍵,系統將此時乒乓開關的狀態讀入計算機I中,并顯示出來,同時顯示經串行通訊后,計算機II接收到的數據;(3)完成后,系統提示“do you want to send another data? Y/N”,根據用戶需要,在鍵盤按下“Y”鍵,則重復步驟(1),進行另一數據的通訊;在鍵盤按除“Y”鍵外的任意鍵,將退出本程序。2.提高要求 能夠進行出錯處理,例如采用奇偶校驗,出錯重傳或者采用接收方回傳和發送方確認來保證發送和接收正確。 三、設計報告要求 1.設計目的和內容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單5.設計結果和體會(包括遇到的問題及解決的方法) 四、8251A通用串行輸入/輸出接口芯片由于CPU與接口之間按并行方式傳輸,接口與外設之間按串行方式傳輸,因此,在串行接口中,必須要有“接收移位寄存器”(串→并)和“發送移位寄存器”(并→串)。能夠完成上述“串←→并”轉換功能的電路,通常稱為“通用異步收發器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251。8251A異步工作方式:如果8251A編程為異步方式,在需要發送字符時,必須首先設置TXEN和CTS#為有效狀態,TXEN(Transmitter Enable)是允許發送信號,是命令寄存器中的一位;CTS#(Clear To Send)是由外設發來的對CPU請求發送信號的響應信號。然后就開始發送過程。在發送時,每當CPU送往發送緩沖器一個字符,發送器自動為這個字符加上1個起始位,并且按照編程要求加上奇/偶校驗位以及1個、1.5個或者2個停止位。串行數據以起始位開始,接著是最低有效數據位,最高有效位的后面是奇/偶校驗位,然后是停止位。按位發送的數據是以發送時鐘TXC的下降沿同步的,也就是說這些數據總是在發送時鐘TXC的下降沿從8251A發出。數據傳輸的波特率取決于編程時指定的波特率因子,為發送器時鐘頻率的1、1/16或1/64。當波特率指定為16時,數據傳輸的波特率就是發送器時鐘頻率的1/16。CPU通過數據總線將數據送到8251A的數據輸出緩沖寄存器以后,再傳輸到發送緩沖器,經移位寄存器移位,將并行數據變為串行數據,從TxD端送往外部設備。在8251A接收字符時,命令寄存器的接收允許位RxE(Receiver Enable)必須為1。8251A通過檢測RxD引腳上的低電平來準備接收字符,在沒有字符傳送時RxD端為高電平。8251A不斷地檢測RxD引腳,從RxD端上檢測到低電平以后,便認為是串行數據的起始位,并且啟動接收控制電路中的一個計數器來進行計數,計數器的頻率等于接收器時鐘頻率。計數器是作為接收器采樣定時,當計數到相當于半個數位的傳輸時間時再次對RxD端進行采樣,如果仍為低電平,則確認該數位是一個有效的起始位。若傳輸一個字符需要16個時鐘,那么就是要在計數8個時鐘后采樣到低電平。之后,8251A每隔一個數位的傳輸時間對RxD端采樣一次,依次確定串行數據位的值。串行數據位順序進入接收移位寄存器,通過校驗并除去停止位,變成并行數據以后通過內部數據總線送入接收緩沖器,此時發出有效狀態的RxRDY信號通知CPU,通知CPU8251A已經收到一個有效的數據。一個字符對應的數據可以是5~8位。如果一個字符對應的數據不到8位,8251A會在移位轉換成并行數據的時候,自動把他們的高位補成0。 五、系統總體設計方案根據系統設計的要求,對系統設計的總體方案進行論證分析如下:1.獲取8位開關量可使用實驗臺上的8255A可編程并行接口芯片,因為只要獲取8位數據量,只需使用基本輸入和8位數據線,所以將8255A工作在方式0,PA0-PA7接實驗臺上的8位開關量。2.當使用串口進行數據傳送時,雖然同步通信速度遠遠高于異步通信,可達500kbit/s,但由于其需要有一個時鐘來實現發送端和接收端之間的同步,硬件電路復雜,通常計算機之間的通信只采用異步通信。3.由于8251A本身沒有時鐘,需要外部提供,所以本設計中使用實驗臺上的8253芯片的計數器2來實現。4:顯示和鍵盤輸入均使用DOS功能調用來實現。設計思路框圖,如下圖所示: 六、硬件設計硬件電路主要分為8位開關量數據獲取電路,串行通信數據發送電路,串行通信數據接收電路三個部分。1.8位開關量數據獲取電路該電路主要是利用8255并行接口讀取8位乒乓開關的數據。此次設計在獲取8位開關數據量時采用8255令其工作在方式0,A口輸入8位數據,CS#接實驗臺上CS1口,對應端口為280H-283H,PA0-PA7接8個開關。2.串行通信電路串行通信電路本設計中8253主要為8251充當頻率發生器,接線如下圖所示。
上傳時間: 2013-12-19
上傳用戶:小火車啦啦啦
隨著當前電子技術及發動機電控技術的發展,以32位嵌入式微控制器及多任務實時操作系統為基本技術特征的新一代電子控制單元ECU(Electronic Control Unit)的開發已成為汽車電子發展應用的主流。本文在Tonadofor OSEKWorks多任務實時操作系統及32佗Power PC微控制器MPC555的基礎上,介紹高壓共軌柴油發動機電子控制單元的最小系統設計方案。
上傳時間: 2013-10-30
上傳用戶:miaochun888
本文檔將深入介紹內部時鐘源模塊(Internal ClockSource, ICS),該模塊可以在部分HCS08 系列微控制器中找到。對HCS08 MCU 來說, ICS 模塊不但是一個非常靈活的時鐘源,而且對于該系列中更小、更低成本的MCU來說非常經濟。ICS 包括鎖頻環、內部時鐘參考、外部振蕩器和時鐘選擇子模塊。這些子模塊組合可以提供多種時鐘模式和頻率,以滿足任何應用的需要。本應用筆記詳細描述ICS 的7 種工作模式、ICS 模塊與其他HCS08 MCU 的內部時鐘發生器(Internal ClockGenerator, ICG)模塊作比較、ICS 模塊從不同低功耗模式下恢復的特性及內部時鐘參考的校準方法。
上傳時間: 2013-11-08
上傳用戶:zhuoying119
有兩種方式可以讓設備和應用程序之間聯系:1. 通過為設備創建的一個符號鏈;2. 通過輸出到一個接口WDM驅動程序建議使用輸出到一個接口而不推薦使用創建符號鏈的方法。這個接口保證PDO的安全,也保證安全地創建一個惟一的、獨立于語言的訪問設備的方法。一個應用程序使用Win32APIs來調用設備。在某個Win32 APIs和設備對象的分發函數之間存在一個映射關系。獲得對設備對象訪問的第一步就是打開一個設備對象的句柄。 用符號鏈打開一個設備的句柄為了打開一個設備,應用程序需要使用CreateFile。如果該設備有一個符號鏈出口,應用程序可以用下面這個例子的形式打開句柄:hDevice = CreateFile("\\\\.\\OMNIPORT3", GENERIC_READ | GENERIC_WRITE,FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL ,NULL);文件路徑名的前綴“\\.\”告訴系統本調用希望打開一個設備。這個設備必須有一個符號鏈,以便應用程序能夠打開它。有關細節查看有關Kdevice和CreateLink的內容。在上述調用中第一個參數中前綴后的部分就是這個符號鏈的名字。注意:CreatFile中的第一個參數不是Windows 98/2000中驅動程序(.sys文件)的路徑。是到設備對象的符號鏈。如果使用DriverWizard產生驅動程序,它通常使用類KunitizedName來構成設備的符號鏈。這意味著符號鏈名有一個附加的數字,通常是0。例如:如果鏈接名稱的主干是L“TestDevice”那么在CreateFile中的串就該是“\\\\.\\TestDevice0”。如果應用程序需要被覆蓋的I/O,第六個參數(Flags)必須或上FILE_FLAG_OVERLAPPED。 使用一個輸出接口打開句柄用這種方式打開一個句柄會稍微麻煩一些。DriverWorks庫提供兩個助手類來使獲得對該接口的訪問容易一些,這兩個類是CDeviceInterface, 和 CdeviceInterfaceClass。CdeviceInterfaceClass類封裝了一個設備信息集,該信息集包含了特殊類中的所有設備接口信息。應用程序能有用CdeviceInterfaceClass類的一個實例來獲得一個或更多的CdeviceInterface類的實例。CdeviceInterface類是一個單一設備接口的抽象。它的成員函數DevicePath()返回一個路徑名的指針,該指針可以在CreateFile中使用來打開設備。下面用一個小例子來顯示這些類最基本的使用方法:extern GUID TestGuid;HANDLE OpenByInterface( GUID* pClassGuid, DWORD instance, PDWORD pError){ CDeviceInterfaceClass DevClass(pClassGuid, pError); if (*pError != ERROR_SUCCESS) return INVALID_HANDLE_VALUE; CDeviceInterface DevInterface(&DevClass, instance, pError); if (*pError != ERROR_SUCCESS) return INVALID_HANDLE_VALUE; cout << "The device path is " << DevInterface.DevicePath() << endl; HANDLE hDev; hDev = CreateFile( DevInterface.DevicePath(), GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL ); if (hDev == INVALID_HANDLE_VALUE) *pError = GetLastError(); return hDev;} 在設備中執行I/O操作一旦應用程序獲得一個有效的設備句柄,它就能使用Win32 APIs來產生到設備對象的IRPs。下面的表顯示了這種對應關系。Win32 API DRIVER_FUNCTION_xxxIRP_MJ_xxx KDevice subclass member function CreateFile CREATE Create ReadFile READ Read WriteFile WRITE Write DeviceIoControl DEVICE_CONTROL DeviceControl CloseHandle CLOSECLEANUP CloseCleanUp 需要解釋一下設備類成員的Close和CleanUp:CreateFile使內核為設備創建一個新的文件對象。這使得多個句柄可以映射同一個文件對象。當這個文件對象的最后一個用戶級句柄被撤銷后,I/O管理器調用CleanUp。當沒有任何用戶級和核心級的對文件對象的訪問的時候,I/O管理器調用Close。如果被打開的設備不支持指定的功能,則調用相應的Win32將引起錯誤(無效功能)。以前為Windows95編寫的VxD的應用程序代碼中可能會在打開設備的時候使用FILE_FLAG_DELETE_ON_CLOSE屬性。在Windows NT/2000中,建議不要使用這個屬性,因為它將導致沒有特權的用戶企圖打開這個設備,這是不可能成功的。I/O管理器將ReadFile和WriteFile的buff參數轉換成IRP域的方法依賴于設備對象的屬性。當設備設置DO_DIRECT_IO標志,I/O管理器將buff鎖住在存儲器中,并且創建了一個存儲在IRP中的MDL域。一個設備可以通過調用Kirp::Mdl來存取MDL。當設備設置DO_BUFFERED_IO標志,設備對象分別通過KIrp::BufferedReadDest或 KIrp::BufferedWriteSource為讀或寫操作獲得buff地址。當設備不設置DO_BUFFERED_IO標志也不設置DO_DIRECT_IO,內核設置IRP 的UserBuffer域來對應ReadFile或WriteFile中的buff參數。然而,存儲區并沒有被鎖住而且地址只對調用進程有效。驅動程序可以使用KIrp::UserBuffer來存取IRP域。對于DeviceIoControl調用,buffer參數的轉換依賴于特殊的I/O控制代碼,它不在設備對象的特性中。宏CTL_CODE(在winioctl.h中定義)用來構造控制代碼。這個宏的其中一個參數指明緩沖方法是METHOD_BUFFERED, METHOD_IN_DIRECT, METHOD_OUT_DIRECT, 或METHOD_NEITHER。下面的表顯示了這些方法和與之對應的能獲得輸入緩沖與輸出緩沖的KIrp中的成員函數:Method Input Buffer Parameter Output Buffer Parameter METHOD_BUFFERED KIrp::IoctlBuffer KIrp::IoctlBuffer METHOD_IN_DIRECT KIrp::IoctlBuffer KIrp::Mdl METHOD_OUT_DIRECT KIrp::IoctlBuffer KIrp::Mdl METHOD_NEITHER KIrp::IoctlType3InputBuffer KIrp::UserBuffer 如果控制代碼指明METHOD_BUFFERED,系統分配一個單一的緩沖來作為輸入與輸出。驅動程序必須在向輸出緩沖放數據之前拷貝輸入數據。驅動程序通過調用KIrp::IoctlBuffer獲得緩沖地址。在完成時,I/O管理器從系統緩沖拷貝數據到提供給Ring 3級調用者使用的緩沖中。驅動程序必須在結束前存儲拷貝到IRP的Information成員中的數據個數。如果控制代碼不指明METHOD_IN_DIRECT或METHOD_OUT_DIRECT,則DeviceIoControl的參數呈現不同的含義。參數InputBuffer被拷貝到一個系統緩沖,這個緩沖驅動程序可以通過調用KIrp::IoctlBuffer。參數OutputBuffer被映射到KMemory對象,驅動程序對這個對象的訪問通過調用KIrp::Mdl來實現。對于METHOD_OUT_DIRECT,調用者必須有對緩沖的寫訪問權限。注意,對METHOD_NEITHER,內核只提供虛擬地址;它不會做映射來配置緩沖。虛擬地址只對調用進程有效。這里是一個用METHOD_BUFFERED的例子:首先,使用宏CTL_CODE來定義一個IOCTL代碼:#define IOCTL_MYDEV_GET_FIRMWARE_REV \CTL_CODE (FILE_DEVICE_UNKNOWN,0,METHOD_BUFFERED,FILE_ANY_ACCESS)現在使用一個DeviceIoControl調用:BOOLEAN b;CHAR FirmwareRev[60];ULONG FirmwareRevSize;b = DeviceIoControl(hDevice, IOCTL_MYDEV_GET_VERSION_STRING, NULL, // no input 注意,這里放的是包含有執行操作命令的字符串指針 0, FirmwareRev, //這里是output串指針,存放從驅動程序中返回的字符串。sizeof(FirmwareRev),& FirmwareRevSize, NULL // not overlapped I/O );如果輸出緩沖足夠大,設備拷貝串到里面并將拷貝的資結束設置到FirmwareRevSize中。在驅動程序中,代碼看起來如下所示:const char* FIRMWARE_REV = "FW 16.33 v5";NTSTATUS MyDevice::DeviceControl( KIrp I ){ ULONG fwLength=0; switch ( I.IoctlCode() ) { case IOCTL_MYDEV_GET_FIRMWARE_REV: fwLength = strlen(FIRMWARE_REV)+1; if (I.IoctlOutputBufferSize() >= fwLength) { strcpy((PCHAR)I.IoctlBuffer(),FIRMWARE_REV); I.Information() = fwLength; return I.Complete(STATUS_SUCCESS); } else { } case . . . } }
上傳時間: 2013-10-17
上傳用戶:gai928943
微型51/AVR 編程器套件裝配說明書 請您在動手裝配這個編程器之前,務必先看完本說明書,避免走彎路。 1.收到套件后請對照元器件列表檢查一下,元件、配件是否齊全? Used Part Type Designator ==== ================ ========== 1 1k R6 1 1uf 50V C11 5 2k2 R2 R3 R4 R5 R11 1 10K*8 RN1 2 11.0592MHZ Q1 Q2 1 12V,0.5W D2 2 15k R7 R8 2 21k R9 R10 4 33p C6 C7 C8 C9 1 47uf 25V C10 1 74HC164 IC6 2 78L05 IC4 IC5 1 100uf 25V C12 1 220R R1 1 AT89C51 IC2 1 B40C800(W02) D1 2 BS170 T1 T2 1 BS250 T3 1 DB9/F J2 1 J1X2 J1 1 LED GN5 D3 1 LM317L IC1 1 TLC2272 IC7 1 ZIF40 IC3 5 1uf C1 C2 C3 C4 C5 另外,套件配有1.5米串行電纜一根和配套的PCB一塊,不含電源。編程器使用的15V交流電源或12V直流電源需要自己配套。2.裝配要點:先焊接阻容元件,3個集成電路插座(IC2,IC7,IC6)其次是晶振, 全橋,穩壓IC 等,然后焊接J2,最后焊接T1,T2,T3三只場效應管。焊接場效應管時務必按照以下方法:拔去電烙鐵的電源,使用電烙鐵余溫去焊接三只場效應管,否則靜電很容易損壞管子。這是裝配成功的關鍵。這三只管子有問題,最典型的現象是不能聯機。由于電源插座封裝比較特殊,國內無法配套上,已改用電源線接線柱,可直接焊接在PCB板焊盤上,如下圖1所示(在下圖中兩個紅色圓圈內指示的焊盤),然后在連接到套件中配套的電源插座上。最近有朋友反映用15V交流比較麻煩,還要另外配變壓器。如果要使用12V的直流電,無需將全橋焊上,將兩個接線柱分別焊接在全橋的正負輸出位置的焊盤上即可,如下圖2所示,藍色圓圈內指示的焊盤,連接電源的時候要注意正負極,不要接錯了。方形焊盤是正極。40腳ZIF插座焊接前,應該將BR1飛線焊接好。注意:由于焊盤比較小,注意焊接溫度,不要高溫長時間反復焊接,會導致焊盤脫落。
上傳時間: 2013-12-31
上傳用戶:caiguoqing
子程序庫的使用方法如下:1.將子程序庫全部內容鏈接在應用程序之后,統一編譯即可。優點是簡單方便,缺點是程序太長,大量無關子程序也包含在其中。 2.僅將子程序庫中的有關部分內容鏈接在應用程序之后,統一編譯即可。有些子程序需要調用一些低級子程序,這些低級子程序也應該包含在內。優點是程序緊湊,缺點是需要對子程序庫進行仔細刪節。MCS-51 浮點運算子程序庫及其使用說明本浮點子程序庫有三個不同層次的版本,以便適應不同的應用場合: 1.小型庫(FQ51A.ASM):只包含浮點加、減、乘、除子程序。 2.中型庫(FQ51B.ASM):在小型庫的基礎上再增加絕對值、倒數、比較、平方、開平方、 數制轉換等子程序。 3.大型庫(FQ51.ASM):包含本說明書中的全部子程序。 為便于讀者使用本程序庫,先將有關約定說明如下: 1.雙字節定點操作數:用[R0]或[R1]來表示存放在由R0或R1指示的連續單元中的數 據,地址小的單元存放高字節。如果[R0]=1234H,若(R0)=30H,則(30H)=12H,(31H)=34H。 2.二進制浮點操作數:用三個字節表示,第一個字節的最高位為數符,其余七位為 階碼(補碼形式),第二字節為尾數的高字節,第三字節為尾數的低字節,尾數用雙字節 純小數(原碼)來表示。
上傳時間: 2013-10-15
上傳用戶:wmwai1314
單片機最小系統電路
上傳時間: 2013-11-08
上傳用戶:zhf01y