一直以來, 電子電路斷路器( E C B ) 都是由一個MOSFET、一個 MOSFET 控制器和一個電流檢測電阻器所組成的。
上傳時間: 2013-10-18
上傳用戶:qwerasdf
本設計要點介紹了兩款能夠增加太陽能電池板接收能量的簡單電路。在這兩款電路中,均由太陽能電池板給電池充電,再由電池在沒有陽光照射的情況下提供應用電路運作所需的電源。
上傳時間: 2013-11-16
上傳用戶:KSLYZ
SMARTISYS IPPCI系列電源控制器是會議演示、指揮控制等系統(tǒng)中必不可少的設備。通過對應用系統(tǒng)中所有設備的電源進行集中管理、定時、延時開關,以及對電動設備的程序化控制,能最大限度保護用電設備,極大的提高系統(tǒng)可靠性和使用方便性。 IPPCI系列產品有程序控制和手動控制兩種模式;在應急情況下,可以通過手動方式對相關設備的電源直接進行開關控制及操作;在程序控制模式下,通TM過SmartControlBuilder編程進行任意獨立或組合控制。輸入采用4-pin專用網絡接線端子,用于直接給電源控制系統(tǒng)供電和發(fā)送控制信號;另外,還包括9-pin接線端子,用于連接8個本地輸入控制8路繼電器的開、關。
上傳時間: 2013-10-25
上傳用戶:wlcaption
本文以51單片機控制四路開關量輸入/六路開關量輸出為例,設計了一個簡單的上位機下位機通信作品,作為模塊學習和整理,供讀者參考!
上傳時間: 2014-12-25
上傳用戶:playboys0
具備處理外部模擬信號功能是很多電子設備的基本要求。為了將模擬信號轉換為數字信 號,就需要藉助A/D 轉換器。將A/D 功能和MCU 整合在一起,就可減少電路的元件數量和 電路板的空間使用。 HT45F23 微控制器內建6 通道,12 位解析度的A/D 轉換器。在本應用說明中,將介紹如何 使用HT45F23 微控制器的A/D 功能。
上傳時間: 2013-10-27
上傳用戶:nostopper
基于硬件集實現了8路彩燈控制,應用555定時器設計了頻率為1 Hz的時鐘電路,為系統(tǒng)提供時鐘信號;將74LS161設計成16進制電路,利用其輸出的低三位QCQBQA生成自動加1,循環(huán)變化的地址信號,為譯碼器提供3位地址輸入;將74LS138設計成8路時分電子開關,控制8路彩燈輪流通斷。基于Multisim對設計電路仿真,仿真結果證明了設計電路功能與理論分析的一致性,對電路的仿真波形表明,系統(tǒng)彩燈循環(huán)周期為8 s,每燈持續(xù)點亮時間為1 s。
上傳時間: 2013-11-16
上傳用戶:二十八號
介紹了一種基于FPGA的多軸控制器,控制器主要由ARM7(LPC2214)和FPGA(EP2C5T144C8)及其外圍電路組成,用于同時控制多路電機的運動。利用Verilog HDL 硬件描述語言在FPGA中實現了電機控制邏輯,主要包括脈沖控制信號產生、加減速控制、編碼器反饋信號的辨向和細分、絕對位移記錄、限位信號保護邏輯等。論文中給出了FPGA內部一些核心邏輯單元的實現,并利用Quartus Ⅱ、Modelsim SE軟件對關鍵邏輯及時序進行了仿真。實際使用表明該控制器可以很好控制多軸電機的運動,并且能夠實現高精度地位置控制。
上傳時間: 2014-12-28
上傳用戶:molo
在GMPLS光網絡中,為了在故障定位時減少定位數障據鏈路故障的信令開銷,避免不必要的網絡資源浪費,降低網絡資源的阻塞率,提出了一種分布式多層故障定位方法。該方法在現有的單層故障定位方案的基礎上,通過雙向數據鏈路故障通知的方法,避免了一些不必要的故障相關操作,減少了網絡節(jié)點的負擔,提高了網絡資源的利用率。
上傳時間: 2013-10-13
上傳用戶:wweqas
針對傳統(tǒng)PID控制系統(tǒng)參數整定過程存在的在線整定困難和控制品質不理想等問題,結合BP神經網絡自學習和自適應能力強等特點,提出采用BP神經網絡優(yōu)化PID控制器參數。其次,為了加快BP神經網絡學習收斂速度,防止其陷入局部極小點,提出采用粒子群優(yōu)化算法來優(yōu)化BP神經網絡的連接權值矩陣。最后,給出了PSO-BP算法整定優(yōu)化PID控制器參數的詳細步驟和流程圖,并通過一個PID控制系統(tǒng)的仿真實例來驗證本文所提算法的有效性。仿真結果證明了本文所提方法在控制品質方面優(yōu)于其它三種常規(guī)整定方法。
上傳時間: 2014-03-21
上傳用戶:diets
Single-Ended and Differential S-Parameters Differential circuits have been important incommunication systems for many years. In the past,differential communication circuits operated at lowfrequencies, where they could be designed andanalyzed using lumped-element models andtechniques. With the frequency of operationincreasing beyond 1GHz, and above 1Gbps fordigital communications, this lumped-elementapproach is no longer valid, because the physicalsize of the circuit approaches the size of awavelength.Distributed models and analysis techniques are nowused instead of lumped-element techniques.Scattering parameters, or S-parameters, have beendeveloped for this purpose [1]. These S-parametersare defined for single-ended networks. S-parameterscan be used to describe differential networks, but astrict definition was not developed until Bockelmanand others addressed this issue [2]. Bockelman’swork also included a study on how to adapt single-ended S-parameters for use with differential circuits[2]. This adaptation, called “mixed-mode S-parameters,” addresses differential and common-mode operation, as well as the conversion betweenthe two modes of operation.This application note will explain the use of single-ended and mixed-mode S-parameters, and the basicconcepts of microwave measurement calibration.
上傳時間: 2014-03-25
上傳用戶:yyyyyyyyyy