亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

大數(shù)據(jù)分析

  • LDO環(huán)路分析及補償

    低壓差線性穩(wěn)壓器(Low Dropout Voltage Regulator,LDO)屬于線性穩(wěn)壓器的一種,但由于其壓差較低,相對于一般線性穩(wěn)壓器而言具有較高的轉(zhuǎn)換效率。但在電路穩(wěn)定性上有所下降,而且LDO有著較高的輸出電阻,使得輸出極點的位置會隨著負載情況有很大關(guān)系。因此需要對LDO進行頻率補償來滿足其環(huán)路穩(wěn)定性要求。內(nèi)容安排上第一節(jié)首先簡單介紹各種線性穩(wěn)壓源的區(qū)別:第二節(jié)介紹LDO中的主要參數(shù)及設(shè)計中需要考慮折中的一些問題;第三節(jié)對LDO開環(huán)電路的三個模塊,運放模塊,PMOS模塊和反饋模塊進行簡化的小信號分析,得出其傳輸函數(shù)并判斷其零極點:第四節(jié)針對前面分析的三個LDO環(huán)路模塊分別進行補償考慮,并結(jié)合RT9193電路對三種補償方法進行了仿真驗證和解釋說明。該電路主要包含基準(zhǔn)電路以及相關(guān)啟動電路,保護電路(OTP,OCP等),誤差放大器,調(diào)整管(Pass Element)和電阻反饋網(wǎng)絡(luò)。在電路上,通過連接到誤差放大器反相輸入端的分壓電阻對輸出電壓進行采樣,誤差放大器的同相輸入端連接到一個基準(zhǔn)電壓(Bandgap Reference),誤差放大器會使得兩個輸入端電壓基本相等,因此,可以通過控制調(diào)整管輸出足夠的負載電流以保證輸出電壓穩(wěn)定。電路所采用的調(diào)整管不同,其Dropout電壓不同。以前大多使用三極管來作為穩(wěn)壓源的調(diào)整管,常見的有NPN穩(wěn)壓源,PNP穩(wěn)壓源(LDO),準(zhǔn)LDO穩(wěn)壓源,其調(diào)整管如圖2所示,其Dorpout電壓分別是:VoRop=2VBE+ Vsr-NPN穩(wěn)壓源VoRоP =VsurPNP穩(wěn)壓源(LDO)VDRoP=VE + Vsur-準(zhǔn)LDO穩(wěn)壓源

    標(biāo)簽: ldo 環(huán)路分析

    上傳時間: 2022-06-19

    上傳用戶:

  • PWM整流電路的原理分析

    無論是不控整流電路,還是相控整流電路,功率因數(shù)低都是難以克服的缺點.PWM整流電路是采用PWM控制方式和全控型器件組成的整流電路,本文以《電力電子技術(shù) 教材為基礎(chǔ),詳細分析了單相電壓型橋式PWM整流電路的工作原理和四種工作模式.通過對PWM整流電路進行控制,選擇適當(dāng)?shù)墓ぷ髂J胶凸ぷ鲿r間間隔,交流側(cè)的電流可以按規(guī)定目標(biāo)變化,使得能量在交流側(cè)和直流側(cè)實現(xiàn)雙向流動,且交流側(cè)電流非常接近正弦波,和交流側(cè)電壓同相位,可使變流裝墨獲得較高的功率因數(shù).:PWM整流電路:功率因數(shù):交流側(cè):直流側(cè)傳統(tǒng)的整流電路中,晶閘管相控整流電路的輸入電流滯后于電壓,其滯后角隨著觸發(fā)角的增大而增大,位移因數(shù)也隨之降低。同時輸入中諧波分量也相當(dāng)大、因此功率因數(shù)很低。而二極管不控整流電路雖然位移因數(shù)接近于1,但輸入電流中諧波分量很大,功率因數(shù)也較低。PWM整流電路是采用PWM控制方式和全控型器件組成的整流電路,它能在不同程度上解決傳統(tǒng)整流電路存在的問題。把逆變電路中的SPWM控制技術(shù)用于整流電路,就形成了PWM整流電路。通過對PWM整流電路進行控制,使其輸入電流非常接近正弦波,且和輸入電壓同相位,則功率因數(shù)近似為1。因此,PWM整流電路也稱單位功率因數(shù)變流器。

    標(biāo)簽: pwm 整流電路

    上傳時間: 2022-06-20

    上傳用戶:

  • 三相逆變器中IGBT的幾種驅(qū)動電路的分析.

    摘要:對幾種三相逆變器中常用的IGBT驅(qū)動專用集成電路進行了詳細的分析,對TLP250,EXB系列和M579系列進行了深入的討論,給出了它們的電氣特性參數(shù)和內(nèi)部功能方框圖,還給出了它們的典型應(yīng)用電路。討論了它們的使用要點及注意事項,對每種驅(qū)動芯片進行了IGBT的驅(qū)動實驗,通過有關(guān)的波形驗證了它們的特點,最后得出結(jié)論:IGBT驅(qū)動集成電路的發(fā)展趨勢是集過流保護、驅(qū)動信號放大功能、能夠外接電源且具有很強抗干擾能力等于一體的復(fù)合型電路。關(guān)鍵詞:絕緣柵雙極晶體管:集成電路;過流保護1前言電力電子變換技術(shù)的發(fā)展,使得各種各樣的電力電子器件得到了迅速的發(fā)展.20世紀(jì)80年代,為了給高電壓應(yīng)用環(huán)境提供一種高輸入阻抗的器件,有人提出了絕緣門極雙極型品體管(IGBT)[1].在IGBT中,用一個MoS門極區(qū)來控制寬基區(qū)的高電壓雙極型晶體管的電流傳輸,這藏產(chǎn)生了一種具有功率MOSFET的高輸入阻抗與雙極型器件優(yōu)越通態(tài)特性相結(jié)合的非常誘人的器件,它具有控制功率小、開關(guān)速度快和電流處理能力大、飽和壓降低等性能。在中小功率、低噪音和高性能的電源、逆變器、不間斷電源(UPS)和交流電機調(diào)速系統(tǒng)的設(shè)計中,它是日前最為常見的一種器件。

    標(biāo)簽: 三相逆變器 igbt 驅(qū)動電路

    上傳時間: 2022-06-21

    上傳用戶:jiabin

  • 大功率器件IGBT散熱分析

    0引言任何器件在工作時都有一定的損耗,大部分的損耗均變成熱量。在實際應(yīng)用過程中,大功率器件IGBT在工作時會產(chǎn)生很大的損耗,這些損耗通常表現(xiàn)為熱量。為了使ICBT能正常工作,必須保證IGBT的耗散功率不大于最大允許耗散功率P額定1660 w,室溫25℃時),必須保證1GBT的結(jié)溫T,不超過其最大值Timar 50 ℃),因此必須采用適當(dāng)?shù)纳嵫b置,將熱量傳導(dǎo)到外部環(huán)境。如果散熱裝置設(shè)計或選用不當(dāng),這些大功率器件因過熱而損壞。為了在確定的散熱條件下設(shè)計或選用合適的散熱器,確保器件安全、可靠地工作,我們需進行散熱計算。散熱計算是通過計算器件工作時產(chǎn)生的損耗功率Pa、器件允許的結(jié)溫T、環(huán)境溫度T,求出器件允許的總熱阻R,f-a);:再根據(jù)Raf-a)求出最大允許的散熱器到環(huán)境溫度的熱阻Rinf-):最后根據(jù)Rbf-a)選取具有合適熱阻的散熱器。1 IGBT損耗分析及計算對于H型雙極模式PWM系統(tǒng)中使用的1GBT模塊,主要由IGBT元件和續(xù)流二極管FWD組成,它們各自發(fā)生的損耗之和就是IGBT本身的損耗。除此,加上1GBT的基極驅(qū)動功耗,即構(gòu)成IGRT模塊整體發(fā)生的損耗。另外,發(fā)生損耗的情況可分為穩(wěn)態(tài)時和交換時。對上述內(nèi)容進行整理可表述如下:

    標(biāo)簽: 大功率器件 igbt 散熱

    上傳時間: 2022-06-21

    上傳用戶:

  • 逆變器IGBT損壞原因分析及處理

    1前言萊鋼型鋼廠大型生產(chǎn)線傳動系統(tǒng)采用西門子SIMOVERT MASTER系列PWM交-直-交電壓型變頻器供電,變頻器采用公共直流母線式結(jié)構(gòu);冷床傳輸鏈采用4臺電機單獨傳動,每臺電機分別由獨立的逆變單元控制,逆變單元的控制方式為無速度編碼器的矢量控制,相互之間依靠速度給定的同時性保持同步。自2005年投入生產(chǎn)以來,冷床傳輸鏈運行較為穩(wěn)定,但2007年2月以后,冷床傳輸鏈逆變單元頻繁出現(xiàn)絕緣柵雙極型晶體管(Insolated Gate Bipolar Transistor,IGBT)損壞現(xiàn)象,具體故障情況統(tǒng)計見表1由表1可知,冷床傳輸鏈4臺逆變器都出現(xiàn)過IGBT損壞的現(xiàn)象,故障代碼是F025和F0272原因分析1)IGBT損壞一般是由于輸出短路或接地等外部原因造成。但從實際情況上看,檢查輸出電纜及電機等外部條件沒有問題,并且更換新的IGBT后,系統(tǒng)可以立即正常運行,從而排除了輸出短路或接地等外部條件造成IGBT損壞。2)IGBT存在過壓。該系統(tǒng)采用公共直流母線控制方式,制動電阻直接掛接于直流母線上,當(dāng)逆變單元的反饋能量使直流母線電壓超過DC 715 V時,制動單元動作,進行能耗制動;此外掛接于該直流母線上的其他逆變單元并沒有出現(xiàn)IGBT損壞的現(xiàn)象,因此不是由于制動反饋過壓造成IGBT燒壞。3)由于負荷分配不均造成出力大的IGBT損壞。從實際運行波形上看,負荷分配相對較為均勻,相互差別僅為2%左右,應(yīng)該不會造成IGBT損壞。此外,4只逆變單元都出現(xiàn)了IGBT損壞現(xiàn)象,如果是由于負荷分配不均造成,應(yīng)該出力大的逆變單元IGBT總是燒壞,因此排除由于負荷分配不均造成IGBT損壞。4)逆變單元容量選擇不合適,裝置容量偏小造成長期過流運行,從而導(dǎo)致IGBT燒毀。逆變單元型號及電機參數(shù):額定功率90kw,額定電流186A,負載電流169 A,短時電流254 A,中間同路額定電流221 A,電源電流205 A,電機功率110kw,電機額定電流205 A,電機正常運行時的電流及轉(zhuǎn)矩波形如圖1所示。

    標(biāo)簽: 逆變器 igbt

    上傳時間: 2022-06-22

    上傳用戶:

  • 大數(shù)據(jù)分析的深度神經(jīng)網(wǎng)絡(luò)方法

    自然語言處理:顛覆傳統(tǒng)自然語言處理模式,突破自然語言處理前沿難關(guān)視覺內(nèi)容理解:將視覺對象和自然語言相結(jié)合,打造可用的視覺內(nèi)容理解產(chǎn)品語音識別:語音識別率大幅上升,入選MIT科技評論2016年十大突破技術(shù)

    標(biāo)簽: 大數(shù)據(jù) 深度神經(jīng)網(wǎng)絡(luò)

    上傳時間: 2022-06-22

    上傳用戶:

  • CCD攝像機大視場光學(xué)鏡頭的設(shè)計

    摘要:為提高CCD攝像機的成像質(zhì)量,同時使鏡頭結(jié)構(gòu)緊湊、小型化,在大視場光學(xué)鏡頭的設(shè)計中,引入標(biāo)準(zhǔn)二次曲面和偶次非球面。根據(jù)初級像差理論,分析了非球面的位置、初始結(jié)構(gòu)參數(shù)的求解規(guī)律。通過理論計算和ZEMAX光學(xué)設(shè)計軟件的優(yōu)化,給出工作波長為Q~Q7m、全視場角為80,相對孔徑為1:15的鏡頭設(shè)計實例。該鏡頭由7塊鏡片組成,包括一個標(biāo)準(zhǔn)二次曲面和兩個8次方非球面;在40p/mm空間頻率處的MTF值超過Q85,全視場畸變小于3%,像質(zhì)優(yōu)良。關(guān)鍵詞:CCD攝像機;大視場;光學(xué)鏡頭;非球面引言CCD攝像設(shè)備在圖像傳感領(lǐng)域的迅速發(fā)展,成為現(xiàn)代光電子學(xué)和測試技術(shù)中最為引人關(guān)注的研究熱點之一。在科研領(lǐng)域,由于CCD具有靈敏度高、噪聲低、成本低、小而輕等優(yōu)點,已成為研究宏觀(如天體)和微觀(如生物細胞)現(xiàn)象不可缺少的工具。在國防軍事領(lǐng)域,CCD成像技術(shù)在微光、夜視及遙感應(yīng)用中發(fā)揮著巨大的作用。總之,在各類光電成像領(lǐng)域中,它已逐步取代了真空攝像管的成像系統(tǒng)。

    標(biāo)簽: ccd 攝像機

    上傳時間: 2022-06-23

    上傳用戶:

  • 微積分、高等數(shù)學(xué)和數(shù)學(xué)分析的差別

    數(shù)學(xué)分析對于數(shù)學(xué)專業(yè)的學(xué)生是邁進大學(xué)大門后,需要修的第一門課,也是最基礎(chǔ)最重要的一門課程。但對于非數(shù)學(xué)專業(yè)的朋友們是個陌生的概念,如果身邊有人問我數(shù)學(xué)分析學(xué)什么?我會毫不猶豫地告訴他們就是微積分,那么似乎所有人都會接著提一個問題:那和我們學(xué)的微積分有什么差異?為什么我們學(xué)一學(xué)期你們要學(xué)一年半到兩年啊?囧……這個問題就不容易回答了,于是我只能應(yīng)付說學(xué)得細了,但其實并非僅僅如此。對這個問題我在學(xué)習(xí)數(shù)學(xué)分析的過程中是不能說清楚的,正因為如此,起先學(xué)分析完全是亂學(xué),沒有重點沒有次序的模仿,其結(jié)果就是感覺自己學(xué)到的東西好比是一條細線拴著好多個大秤癥,只要有一點斷開,整個知識系統(tǒng)頓時傾覆。我也一直在思考這個問題,但直到在北師大跟著王昆揚老師學(xué)了一學(xué)期實變函數(shù)論之后,我才意識到數(shù)分與高數(shù)真正的區(qū)別在于何處。先從微積分說起,在國內(nèi)微積分這門課程大致是供文科、經(jīng)濟類學(xué)生選修的,其知識結(jié)構(gòu)非常清晰,主要內(nèi)容就是要說清兩件事:第一件介紹兩種運算,求導(dǎo)與求不定積分,并且說明它們互為逆運算。第二件介紹基礎(chǔ)的微分學(xué)和積分學(xué),并且給出它們之間的聯(lián)系—Newton-Leibniz公式。這里需要強調(diào)的是,求不定積分作為求導(dǎo)數(shù)的逆運算屬于微分學(xué)而不屬于積分學(xué),真正屬于積分學(xué)的是Riemann定積分。不定積分與定積分雖然在字面上只差一字,但從數(shù)學(xué)定義來看卻有本質(zhì)的區(qū)別,不定積分是找一個函數(shù)的原函數(shù),而Riemann定積分則是求Riemann和的極限,事實上它們之間毫無關(guān)系,既存在著沒有原函數(shù)但Riemann可積的函數(shù),也存在著有原函數(shù)但Riemann不可積的函數(shù)。但無論如何Newton-Leibniz 公式好比一座橋梁溝通了不定積分(微分學(xué))和定積分(積分學(xué)),這也是Newton-Leibniz公式被稱為微積分基本定理的原因。因此我們可以看出,微積分的核心內(nèi)容就是學(xué)習(xí)兩種新運算,了解兩樣新概念,熟悉一條基本定理而已。

    標(biāo)簽: 微積分 高等數(shù)學(xué)

    上傳時間: 2022-06-24

    上傳用戶:xsr1983

  • 十個精密整流電路的詳細分析

    圖1是最經(jīng)典的電路,優(yōu)點是可以在電阻R5上并聯(lián)濾波電容.電阻匹配關(guān)系為R1=R2,R4=R5=2R3;可以通過更改R5來調(diào)節(jié)增益當(dāng)Ui>O時,分析各點電壓正負關(guān)系可知D1截止,D2導(dǎo)通,R1,R2和A1構(gòu)成了反向比例運算器,增益為-1,R4,R3,R5和A2構(gòu)成了反向求和電路,通過R4的支路的增益為-1,通過R3支路的增益為2,等效框圖如下:當(dāng)Ui<0時,分析各點電壓的正負關(guān)系可知,D1導(dǎo)通,D2截止,A1的作用導(dǎo)致R2左端電壓鉗位在0V,A2的反饋導(dǎo)致R3右端電壓鉗位在0V,所以R2、R3支路兩端電位相等,無電流通過,R4,R5和A2構(gòu)成反向比例運算器,增益為-1,輸入阻抗仍為R1R4。因此,此電路的輸出等于輸入的絕對值。此電路的優(yōu)點:輸入阻抗恒等于R1IR4,輸入阻抗低,調(diào)節(jié)R5可調(diào)節(jié)此電路的增益大小,在R5上并聯(lián)電容可實現(xiàn)濾波功能。此電路適用低頻電路,當(dāng)頻率大時,輸出電壓產(chǎn)生偏移,且輸入電壓接近0V時,輸出電壓失真,二極管的選型也非常重要,需選導(dǎo)通壓降大些的。輸入信號小時,也會影響最終輸出。

    標(biāo)簽: 精密整流電路

    上傳時間: 2022-06-25

    上傳用戶:qdxqdxqdxqdx

  • 半導(dǎo)體芯片失效分析

    從典型的表面貼裝工廠的實踐來看,半導(dǎo)體失效原因主要分為與材料有關(guān)的失效、與工藝有關(guān)的失效,以及電學(xué)失效。通常與材料和工藝有關(guān)的失效發(fā)生的較為頻繁,而且失效率很高,但是占有90%以上的失效并不是真正的失效,有經(jīng)驗的工藝工程師和失效分析工程師可以通過 射線焊點檢測儀、掃描電子顯微鏡、能量分散譜、于同批產(chǎn)品交叉試驗就可以確定失效與否,從而找到真正的原因。本文基于摩托羅拉汽車電子廠的實踐簡要介紹前兩種失效形式,著重研究電學(xué)失效的特點和形式,前兩種失效形式往往需要靠經(jīng)驗來判斷,而電學(xué)失效更需要一定的理論知識給與指導(dǎo)分析。電學(xué)失效中,首先介紹芯片失效分析手段、分析程序,以及國內(nèi)外失效分析實驗室設(shè)備情況,在電學(xué)失效分析中所面臨的最大挑戰(zhàn)是失效點的定位和物理分析,在摩托羅拉汽車電子廠實踐中發(fā)現(xiàn),對產(chǎn)品質(zhì)量影響最主要的是接孔(Via)失效,它是汽車整車裝配廠客戶的主要抱怨以及影響產(chǎn)品可靠性導(dǎo)致整車召回的主要原因之一。本文基于接孔失效實際案例中的統(tǒng)計數(shù)據(jù),討論了接孔失效的失效分布狀態(tài)函數(shù),回歸了威布爾曲線,計算出分布參數(shù)m和c:在阿列里烏斯(Arhenius)失效模型的基礎(chǔ)上建立了接孔失效模型,并計算模型參數(shù)溫度壽命加速因子,從而估算出受器件影響的產(chǎn)品的壽命。本文目的旨在基于表面貼裝工廠的具體芯片失效統(tǒng)計數(shù)據(jù),進行實際工程的失效分析,探索企業(yè)建立失效分析以控制產(chǎn)品質(zhì)量、提高產(chǎn)品可靠性的機制

    標(biāo)簽: 半導(dǎo)體芯片

    上傳時間: 2022-06-26

    上傳用戶:

主站蜘蛛池模板: 鸡东县| 会泽县| 根河市| 定结县| 山西省| 丘北县| 全州县| 蚌埠市| 常宁市| 扶绥县| 安康市| 吴桥县| 赫章县| 昭平县| 静安区| 甘南县| 东乡族自治县| 眉山市| 雅江县| 芦山县| 宁都县| 常州市| 马边| 桐柏县| 五常市| 自治县| 顺平县| 抚顺县| 祁连县| 双流县| 白玉县| 松溪县| 佛教| 永城市| 金堂县| 会同县| 晋中市| 赣州市| 曲阳县| 青浦区| 清丰县|