// 入口參數:
// l: l = 0, 傅立葉變換 l = 1, 逆傅立葉變換
// il: il = 0,不計算傅立葉變換或逆變換模和幅角;il = 1,計算模和幅角
// n: 輸入的點數,為偶數,一般為32,64,128,...,1024等
// k: 滿足n=2^k(k>0),實質上k是n個采樣數據可以分解為偶次冪和奇次冪的次數
// pr[]: l=0時,存放N點采樣數據的實部
// l=1時, 存放傅立葉變換的N個實部
// pi[]: l=0時,存放N點采樣數據的虛部
// l=1時, 存放傅立葉變換的N個虛部
//
// 出口參數:
// fr[]: l=0, 返回傅立葉變換的實部
// l=1, 返回逆傅立葉變換的實部
// fi[]: l=0, 返回傅立葉變換的虛部
// l=1, 返回逆傅立葉變換的虛部
// pr[]: il = 1,i = 0 時,返回傅立葉變換的模
// il = 1,i = 1 時,返回逆傅立葉變換的模
// pi[]: il = 1,i = 0 時,返回傅立葉變換的輻角
// il = 1,i = 1 時,返回逆傅立葉變換的輻角
標簽:
il
傅立葉變換
計算
模
上傳時間:
2017-01-03
上傳用戶:ynsnjs
光電穩定技術主要用于對戰區進行晝夜偵察和監視,捕獲目標并進行跟蹤、識別、測距,控制精確制導武器的投放及目標指示等。在直升機、戰斗機、艦船、無人機、導引頭、地面車輛和航天飛行器都有應用。目前,光電穩定技術涉及的技術領域越來越廣,主要完成的功能越來越多,精度要求越來越高,系統越來越復雜。光電穩定技術控制技術的研究也發生著巨大的變化,對光電穩定技術精度、可靠性、反應速度、網絡通信等提出了更高的要求。 本文首先概述了國內外光電平臺的結構和視軸穩定方法以及光電平臺的發展概況,介紹了常用的穩定與跟蹤控制方法;進而從理論上分析了兩軸光電穩定平臺隔離載體角運動的原理,總結并提出了視軸穩定對伺服系統的性能要求,從而為伺服系統的設計提供了理論依據。 本文詳細介紹了穩定平臺系統通常所采用的兩軸四框結構,保證光電傳感器視軸的穩定與跟蹤,支承光具座的內萬向架主要功能是盡可能隔離載體振動,避免阻力、平臺移動、轉動等干擾;外萬向架主要作用是將內萬向架與環境隔離,減小內萬向架的環境擾動。
標簽:
大負載
光電
平臺技術
上傳時間:
2013-05-26
上傳用戶:chengli008