亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

啟發式研究

  • 三相全控橋式整流和有源逆變電路的設計

    1,更近一步了解三相全控橋式整流電路的工作原理,研究全控橋式整流電路分別工作在電阻負載、電阻-電感負載下Ud,ld及Uvt的波形,初步認識整流電路在實際中的應用。2,研究三相全控橋式整流逆變電路的工作原理,并且驗證全控橋式電路在有源逆變時的工作條件,了解逆變電路的用途。=.設計理念與思路晶閘管是一種三結四層的可控整流元件,要使晶閘管導通,除了要在陽極-陰極間加正向電壓外,還必須在控制級加正向電壓,它一旦導通后,控制級就失去控制作用,當陰極電流下降到小于維持電流,晶閘管回復阻斷。因此,晶閘管的這一性能可以充分的應用到許多的可控變流技術中。在實際生產中,直流電機的調速、同步電動機的勵磁、電鍍、電焊等往往需要電壓可調的直流電源,利用晶閘管的單向可控導電性能,可以很方便的實現各種可控整流電路。當整流負載容量較大時,或要求直流電壓脈沖較小時,應采用三相整流電路,其交流側由三相電源提供。三相可控整流電路中,最基本的是三相半波可控整流電路,應用最廣泛的是三相橋式全控整流電路。三相半波可控電路只用三只晶閘管,接線簡單,但晶閘管承受的正反向峰值電壓較高,變壓器二次繞組的導電角僅120",變壓器繞組利用率較低,并且電流是單向的,會導致變壓器鐵心直流磁化。而采用三相全控橋式整流電路,流過變壓器繞組的電流是反向電流,避免了變壓器鐵芯的直流磁化,同時變壓器繞組在一個周期的導電時間增加了一倍,利用率得到了提高。逆變是把直流電變為交流電,它是整流的逆過程,而有源逆變是把直流電經過直-交變換,逆變成與交流電源同頻率的交流電反送到電網上去。逆變在工農業生產、交通運輸、航空航天、辦公自動化等領域已得到廣泛的應用,最多的是交流電機的變頻調速。另外在感應加熱電源、航空電源等方面也不乏逆變電路的身影。在很多情況下,整流和逆變是有著密切的聯系,同一套晶閘管電路即可做整流,有能做逆變,常稱這一裝置為"變流器2

    標簽: 整流電路

    上傳時間: 2022-05-31

    上傳用戶:zhaiyawei

  • 基于單片機控制的超聲波發生器驅動電源的研究

    人的耳朵能感受到的振蕩頻率在20-20000Hz范圍的聲波,超過人耳能感受到的聲波頻率以上的聲波叫超聲波。超聲波有許多應用,有超聲波清洗、超聲波鉆孔、超聲波振動等。超聲波振動是近幾十年興起的新事物,隨著人們對超聲波研究的不斷深入,應用也日益廣泛。    功率超聲技術憑其獨特的優點在國民經濟各部門日益廣泛應用。目前超聲設備由采用大功率電子管或高頻可控硅發展到全控型電子器件。隨著新理論、新技術、新器件的不斷出現和成熟,超聲技術必將充分發揮其優勢,在各領域產生更大作用。本文涉及的功率超聲系統主要由高頻超聲波電源和壓電振子兩部分組成。高頻超聲波電源為壓電振子提供電能,壓電振子將電能轉為動能。    超聲波發生器的種類很多,大致可分為兩種類型,機械型和電聲型。機械型超聲波發生器直接用機械方法使物體振動而產生超聲波。常見的機械型超聲波都是流體動力式的,即利用每秒幾萬次的頻率斷續從噴口噴出,撞擊放在噴口前的空腔或簧片,引起共振在媒質中產生超聲波。電聲型超聲波發生器是應用的最廣泛的。它是利用電磁能量轉換成機械波能量。    本設計采用頻率自動跟蹤的方式來使超聲波換能器處于諧振,滿足超聲波電源與超聲波換能器工作在最佳狀態,使得整機達到最佳工作效率。功率檢測電路調節脈沖電壓的脈寬來改變超聲波發生器的輸出功率,以實現功率恒定。壓控振蕩器選用貨源充足、價格低廉的TL494,可滿足本設計要求。D類功率放大器就是開關功率放大器,選用高耐壓的VMOS管,組成半橋電路,VMOS管的驅動采用變壓器隔離倒相。由于超聲波換能器的特性,超聲波清洗機中的匹配電路包含兩個:一個是功率匹配,一個是調諧匹配。前者是為了使超聲波電源的輸出內阻與負載阻抗相一致,采用變壓器匹配方法。后者是使換能器呈現純阻性,采用串聯電感的方法。    本文對系統的總體設計方案、硬件和軟件設計、單元電路及主要單元電路實驗進行了詳細地介紹。文章最后應用PSPICE軟件對整個系統進行了仿真分析,對理論設計進行修正。結果表明系統設計可行,性能指標基本可以滿足設計要求。

    標簽: 單片機 超聲波發生器 電源

    上傳時間: 2022-06-01

    上傳用戶:得之我幸78

  • 基于AVR單片機的超聲波電源的研究

    隨著新理論、新器件、新技術的不斷出現或成熟,功率超聲技術在國民經濟各個部門中日益廣泛應用。超聲波電源為超聲波換能器提供電能,超聲波換能器將電能轉換為動能,完成超聲波清洗、防垢除垢等功能。本文主要對高頻超聲波電源進行了理論分析與設計。    首先對超聲波電源基本拓撲結構進行了分析,提出了超聲波電源功放電路可以采用的三種方案:半橋功率放大電路、全橋功率放大電路、推挽功率放大電路。通過對比分析了各種方案的優點和缺點,確定了超聲波電源功率放大電路的方案。針對超聲波電源的具體要求,設計了整流濾波電路,功率放大電路、驅動電路、緩沖電路、功率反饋電路、保護電路。其中,給出了整流濾波電路和功率放大電路的參數計算。    其次對超聲波換能器的特性進行了分析,介紹了超聲波換能器的串聯諧振頻率和并聯諧振頻率。然后對幾種常用的匹配網絡進行了分析,包括單個電感的匹配、電感-電容匹配、改進的電感-電容匹配,分析了其優點和缺點。    然后由于超聲波電源需具有性能高、功率大、成本低的特點,要求能較好適應超聲波換能器阻抗變化、頻率漂移等所帶來的疑難問題。本文介紹了超聲波電源幾種常見的頻率跟蹤方案。本文研究的是一種傳統的自激式超聲波電源,串聯諧振頻率在20KHz左右,頻率跟蹤采用負載分壓式反饋系統,在以前手動調節電感的基礎上,通過在反饋回路添加通過AVR單片機控制數字電感來跟蹤超聲波換能器的諧振頻率,易操作,能穩定運行。    最后在理論設計的基礎上,對超聲波電源各個組成電路進行了實際制作,在超聲波電源與超聲波換能器匹配無誤、工作穩定后,對有關電路進行了現場試驗驗證。實驗結果表明,該超聲波電源具有一定的使用價值。

    標簽: avr單片機 超聲波電源

    上傳時間: 2022-06-08

    上傳用戶:

  • 便攜式血糖儀的人機交互研究

    糖尿病被列為世界三大難癥之一,危害巨大。而隨著人們生活方式和生活環境的改變,糖尿病患者的數量還在不斷增多,且呈現年輕化的趨勢。由于影響糖尿病病情的因素很多,大部分患者需要進行血糖的自我監控,以達到穩定病情和促進治療的目的,而便攜式血糖儀因其使用便捷而受到廣大糖尿病患者的青睞。現有針對便攜式血糖儀的研究大多是針對技術層面的,極少有人關注它的軟性層面即其在人機交互性方面的發展。本文以人機交互理論為指導,從尋找和研究目標用戶、發掘用戶的潛在交互需求出發,系統分析和比較了現有便攜式血糖儀的使用過程和使用方式,從而了解了其在使用過程中的人機交互情況,并針對現有便攜式血糖儀的交互性進行了評估,總結了現有便攜式血糖儀在人機交互和人機界面設計方面的優點和問題點,提出了針對便攜式血糖儀的交互式設計準則以及在設計上的改進意見,同時還展望了便攜式血糖儀在人機交互方面的發展趨勢。2.1便攜式血糖儀的分類血糖儀自1968年由湯姆·克萊曼斯發明至今,血糖儀經歷了不同的技術發展階段,出現了采血便攜血糖儀、動態血糖儀、表式血糖儀等等不同原理的血糖儀,目前廣大糖尿病患者大部分購買的都是便攜式血糖儀。2.1.1按工作原理分類從工作原理上便攜式血糖儀分為兩種,一種是光電型,一種是電極型。光電血糖儀有一個光電頭,但探測頭暴露在空氣里,很容易受到污染,影響測試結果,使用壽命比較短,一般在兩年之內是比較準確的,兩年后需要定期做校準;電極型的測試原理比較科學,電極口內藏,可以避免污染,并且測試的精讀比較高,正常使用的情況下,不需要校準,壽命長。2.1.2按測糖方式分類目前市場上常見的血糖儀按照測糖技術可以分為電化學法測試和光反射技術測試兩大類。前者是酶與葡萄糖反應產生的電子再運用電流記數設施,讀取電子的數量,再轉化成葡萄糖濃度讀數。后者是通過酶與葡萄糖的反應產生的中間物(帶顏色物質),運用檢測器檢測試紙反射面的反射光的強度,將這些反射光的強度,轉化戲葡萄糖濃度

    標簽: 便攜式血糖儀 人機交互

    上傳時間: 2022-06-17

    上傳用戶:zhanglei193

  • 基于觸摸屏的的人機交互行為與機制研究

    本文以觸摸屏的人機交互設計為與機制為課題背景,對不同觸摸設備的交互特征和用戶使用行為進行分析,包括手機(小尺寸觸摸設備)及平板(大尺寸觸摸設備),從而總結出觸摸設備的交互設計原則。通過實例總結手機為例的小尺寸屏幕的6種典型界面結構,平板為例的大尺寸觸屏設備的6種典型界面結構。大部分的應用界面都是以此為基礎展開設計。詳細介紹了各個框架的優勢和劣勢,以及對應的使用場景,適合的應用類型。填補了觸摸屏界面結構庫眼動研究的空白。并通過眼動實驗分析用戶進行觸屏操作時的眼動規律,經過數據分析進一步探索界面結構的應用場景和交互操作特性,得出一套完整的界面結構選擇規律。最后應用前文的研究結論,通過實例設計一款未來的家庭廚房生活的概念產品。選擇與其匹配的界面結構,進行交互界面及流程設計。本文的研究結論對改善觸屏設備的交互設計是非常有意義的,符合科技發展趨勢且具有一定的應用價值。隨著信息社會的發展,觸摸屏設備逐步進入人們的視線。越來越多的觸屏設備將投入市場并被用戶所使用,觸摸設備也將更多的影響和改變人們的生活方式。觸摸屏作為一種最新的電腦輸入設備,是目前最簡單、自然的一種人機交互方式。它賦予了多媒體以嶄新的面貌。觸摸屏的人機交互和個人電腦的交互方式有著天壤之別,個人電腦的輸入設備主要是由鍵盤和鼠標操作完成,點擊式交互是個人電腦上的主要交互方式;而觸摸屏則是以手指的手勢操作為主。手勢操作更直接、有效,但是由于手指觸擊屏幕的面積較大,相比鼠標更容易造成誤操作。同時,不同材質的觸摸屏靈敏度也決定了手勢交互是否友好。研究表明,用戶用食指和拇指進行操作也是有區別的,拇指的觸及范圍相對食指會更大,觸擊準確率更低11。因此對觸摸屏進行針對性的設計研究,而不是直接將桌面設備的界面設計規則照搬過來是有一定實踐意義的。本文的研究以觸屏界面結構為落腳點,設計的最終目的是提出一套觸屏界面結構的選擇規范,為觸屏人機界面資源庫添加結構庫的部分。讓產品有著更加良好的用戶體驗,有效方便的解決開發人員在設計一款新的應用時不知選取怎樣的界面結構問題,減少開發人員的重復工作量和不必要的創新和濫用,規范用戶界面結構使產品在不同的觸摸設備上保持一致的交互體驗。這對于產品的最終用戶,體驗將起到很重要的作用。

    標簽: 觸摸屏 人機交互

    上傳時間: 2022-06-18

    上傳用戶:zhanglei193

  • IGBT超音頻串聯移相調功感應加熱電源的研究.

    本文以超音頻串聯諧振式感應加熱電源為研究對象,應用鎖相環和PID技術,采用數字信號處理器(DSP)和復雜可編程邏輯器件(CPLD)聯合控制的數字化技術實現感應加熱電源的頻率跟蹤和0~1800自由移相調功,為感應加熱電源系統的數字化、信息化、柔性化、智能化控制提供了優質、可靠的技術基礎。論文首先介紹了感應加熱的基本原理及感應加熱技術的發展動態。然后通過對感應加熱電源中的主電路拓撲進行分析,比較串聯譜振逆變電路與并聯諧振逆變電路的優缺點,選擇了更適合超音頻感應加熱電源的串聯語振主電路。在確定了設計方案后,詳細分析了電源的主電路結構并進行了系統各組成部分器件的參數計算和選取。通過對鎖相環原理進行了分析,提出一種基于DSP的數字鎖相環(DPLL)的實現方法。論文在分析和對比了感應加熱電源的各種調功方式后,選擇了移相調功對感應加熱電源進行恒流調節。通過兩種硬件方案的對比,確定了一種最佳方案,實現了基準臂與移相臂之間移相角的數字控制信號的產生。論文搭建了以TMS320LF2407A為控制核心的硬件控制平臺。包括了采樣電路、保護電路、驅動電路、顯示電路等外圍電路。在此基礎上編制了系統的程序,完成了樣機,并對其進行了整機聯調,給出了電源的實測波形。實驗結果證明基于DSP的DPLL完全可以勝任超音頻的頻率跟蹤,系統硬件電路可靠,程序運行良好。

    標簽: igbt 音頻 電源

    上傳時間: 2022-06-19

    上傳用戶:20125101110

  • 基于TDCGP2的高精度脈沖激光測距系統研究

    論文通過對高精度脈沖式激光測距系統的研究,并在參照課題技術指標的基礎上,旨在提供一種高精度脈沖式激光測距系統的解決方案,并對脈沖式激光測距儀系統設計中所涉及的脈沖讀取與放大電路、時刻鑒別、時間間隔測量等關鍵技術進行了深入的研究和探討。論文利用電流-電壓轉換法對脈沖信號進行讀取,并使用了可控增益放大技術,使得放大后的脈沖信號能在限定幅值范圍內變化,減小了時刻鑒別中由于脈沖幅值波動所引起的漂移誤差;在時刻鑒別中,采用了預鑒別恒定比值鑒別法使漂移誤差進一步減小。時間間隔測量是論文的核心部分,基于TDC-GP2的時間間隔測量設計使系統的時差測量精度達到72ps,高精度的時差測量為系統測距精度提供了可靠保障。關鍵詞:脈沖激光測距;可控增益放大;蜂值檢測:時刻鑒別:TDC-GP2

    標簽: 脈沖激光測距

    上傳時間: 2022-06-21

    上傳用戶:

  • 基于IGBT的150KHZ大功率感應加熱電源的研究

    本文以感應加熱電源為研究對象,闡述了感應加熱電源的基本原理及其發展趨勢。對感應加熱電源常用的兩種拓撲結構-電流型逆變器和電壓型逆變器做了比較分析,并分析了感應加熱電源的各種調功方式。在對比幾種功率調節方式的基礎上,得出在整流側調功有利于高頻感應加熱電源頻率和功率的提高的結論,選擇了不控整流加軟斬波器調功的感應加熱電源作為研究對象,針對傳統硬斬波調功式感應加熱電源功率損耗大的缺點,采用軟斬波調功方式,設計了一種零電流開關準諾振變換器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍頻式串聯 振高頻感應加熱電源。介紹了該軟斬波調功器的組成結構及其工作原理,通過仿真和實驗的方法研究了該軟斬波器的性能,從而得出該軟斬波器非常適合大功率高頻感應加熱電源應用場合的結論。同時設計了功率閉環控制系統和PI功率調節器,將感應加熱電源的功率控制問題轉化為Buck斬波器的電壓控制問題。針對目前IGBT器件頻率較低的實際情況,本文提出了一種新的逆變拓撲-通過IGBT的并聯來實現倍頻,從而在保證感應加熱電源大功率的前提下提高了其工作頻率,并在分析其工作原理的基礎上進行了仿真,驗證了理論分析的正確性,達到了預期的效果。另外,本文還設計了數字鎖相環(DPLL),使逆變器始終保持在功率因數近似為1的狀態下工作,實現電源的高效運行。最后,分析并設計了1GBT的緩沖吸收電路。本文第五章設計了一臺150kHz,10KW的倍頻式感應加熱電源實驗樣機,其中斬波器頻率為20kHz,逆變器工作頻率為150kHz(每個IGBT工作頻率為75kHz),控制孩心采用TI公司的TMS320F2812 DSP控制芯片,簡化了系統結構。實驗結果表明,該倍頻式感應加熱電源實現了斬波器和逆變器功率器件的軟開關,有效的減小了開關損耗,并實現了數字化,提高了整機效率。文章給出了整機的結構設計,直流斬波部分控制框圖,逆變控制框圖,驅動電路的設計和保護電路的設計。同時,給出了關鍵電路的仿真和實驗波形。

    標簽: igbt 電源

    上傳時間: 2022-06-22

    上傳用戶:

  • 大功率IGBT驅動保護電路的研究與應用

    IGBT是MOSFET和GTR的復合器件,它具有開關速度快、熱穩定性好、驅動功率小和驅動電路簡單的特點,又具有通態壓降小、耐壓高和承受電流大等優點.IGBT作為主流的功率輸出器件,特別是在大功率的場合,已經被廣泛的應用于各個領域。本文在介紹了1GBT結構、工作特性的基礎上,針對風電變流器實驗平臺和岸電電源的實際應用,選擇了各自的IGBT模塊。然后對IGBT的驅動電路進行了深入地研究,詳細地說明了IGBT對柵極驅動的一些特殊要求及應該滿足的條件。接著對三種典型的驅動模塊進行了分析,同時分別針對風電變流器實驗平臺和岸電電源,設計了三菱的M57962AL和Concept的2SD315A驅動模塊的外圍驅動電路。對于大功率的設備,電路中經常會遇到過流、過壓、過溫的問題,因此必要的保護措施是必不可少的。針對上述問題,本文分析了出現各種狀況的原因,并給出了各自的解決方案:采用分散式和集中式過流保護相結合的方法實現過電流保護;采用緩存吸收電路及采樣檢測電路以防止過電壓的出現;通過選擇正確的散熱器及利用鉑電阻的特性來實施檢測溫度,從而使電路能夠更好地可靠運行。同時,為了滿足今后1.5MW風電變流器和試驗電源等更大功率設備的需求,在性價比上更傾向于采用IGBT模塊串、并聯的方式來取代高耐壓、大電流的單管1GBT.本文就同一橋臂的IGBT串聯不均壓,并聯不均流的問題進行了闡述,并給出了相應的解決方案。最后針對上述的不平衡情形,采用PSpice對其進行仿真模擬,并通過加入均壓、均流電路后的仿真結果,有效地說明了電路的可行性。

    標簽: 大功率 igbt

    上傳時間: 2022-06-22

    上傳用戶:

  • ICP中RF電源的功率控制的研究

    本論文主要研究自激式RF電源的功率控制,主要分為七個部分:第部分主要介紹ICP儀器的發展歷史、RF電源的主流技術路線及國內外研究現狀,指出了存在的部分問題,確立了本文研究主題。第二部分簡介了ICP儀器的系統結構,重點介紹等離子炬光源以及自激式RF電源。首先從系統的角度介紹了ICP儀器的組成及工作原理,然后對等離子矩光源的產生條件及生成機理作了說明,并且對其在點火過程中表現的負載特性作了分析,最后從ICP儀器的分析性能方面說明了它對RF電源的設計要求,明確RF電源的設計指標。第三部分詳細介紹了自激式RF電源的實現原理。按照信號流向首先介紹了作為跟蹤等離子矩特性的振蕩源——鎖相環的原理,分別對其中的鑒相器、環路濾波器、壓控振蕩器和驅動電路等做了詳細介紹。然后介紹了高頻功率放大器的原理,確定了主要元件參數,并介紹了適用于自激式RF電源的電路結構。最后對阻抗匹配原理作了介紹,并重點介紹了集中參數元件匹配網絡。第四部分詳細介紹了本文所做的設計工作,包含軟硬件設計。這部分仍然是按信號流向作說明,根據自激式RF電源的結構特點,針對這幾部分選擇合適的電路結構、元件參數等設計完成鎖相環路、高效率E類推挽功率放大電路以及阻抗匹配網絡。除此之外,還包括電路中的主要信號采樣與檢測、熱設計、電磁兼容設計以及軟件部分的設計說明。第五部分對本文采取的功率控制流程與策略作詳細說明,介紹了如何通過改善控制流程和控制策略以提高RF電源性能。第六部分對所設計的RF電源進行了測試,表明本設計達到了預定的設計指標,說明此方法的可行性與實用性,并且分析了等離子炬的負載變化過程,對RF電源的設計提供了有益的參考。第七部分作了全文總結與展望。所設計RF電源成功點燃等離子炬,期間通過對RF電源的測試,并在ICP-AES整機上進行了系統驗證,測試證明所設計的自激式RF電源與同類電源相比性能有所提升。

    標簽: icp rf 電源 功率控制

    上傳時間: 2022-06-23

    上傳用戶:

主站蜘蛛池模板: 社旗县| 崇义县| 砚山县| 宝山区| 东乡族自治县| 商洛市| 洪江市| 图片| 沂水县| 康保县| 嘉峪关市| 凤冈县| 乌苏市| 万年县| 北海市| 台北市| 志丹县| 绥棱县| 宣城市| 合阳县| 舞阳县| 志丹县| 翁牛特旗| 琼海市| 山阳县| 玉龙| 闽侯县| 清苑县| 衡阳县| 平远县| 丽江市| 个旧市| 正宁县| 普陀区| 桂阳县| 宜兰县| 当雄县| 鄂托克旗| 钟祥市| 论坛| 牙克石市|