數字語音通信是當前信息產業中發展最快、普及面最廣的業務。語音信號壓縮編碼是數字語音信號處理的一個方面,它和通信領域聯系最為密切。在現有的語音編碼中,美國聯邦標準混合激勵線性預測(MELP—Mixed Excited Linear Prediction)算法在2.4kb/s的碼率下取得了較好的語音質量,具有廣闊的應用前景。 FPGA作為一種快速、高效的硬件平臺在數字信號處理和通信領域具有著獨特的優勢。現代大容量、高速度的FPGA一般都內嵌有可配置的高速RAM、PLL、LVDS、LVTTL以及硬件乘法累加器等DSP模塊。用FPGA來實現數字信號處理可以很好地解決并行性和速度問題,而且其靈活的可配置特性,使得FPGA構成的DSP系統非常易于修改、測試及硬件升級。 本論文闡述了一種基于FPGA的混合激勵線性預測聲碼器的研究與設計。首先介紹了語音編碼研究的發展狀況以及低速率語音編碼研究的意義,接著在對MELP算法進行深入分析的基礎上,提出了利用DSP Builder在Matlab中建模的思路及實現過程,最后本文把重點放在MELP聲碼器的編解碼器設計上,利用DSP Builder、QuartusⅡ分別設計了其中的濾波器、分幀加窗處理、線性預測分析等關鍵模塊。 在Simulink環境下運用SignalCompiler對編解碼系統進行功能仿真,為了便于仿真,系統中沒有設計的模塊在Simulink中用數學模型代替,仿真結果表明,合成語音信號與原始信號很好的擬合,系統編解碼后語音質量基本良好。
上傳時間: 2013-06-02
上傳用戶:lili1990
在航空航天,遙感測量,安全防衛以及家用影視娛樂等領域,要求能及時保存高清晰度的視頻信號供后期分析、處理、研究和欣賞。因此,研究一套處理速度快,性能可靠,使用方便,符合行業相關規范的高清視頻編解碼系統是十分必要的。 本文首先介紹了高清視頻的發展歷史。并就當前相關領域的發展闡述了高清視頻編解碼系統的設計思路,提出了可行的系統設計方案。基于H.264的高清視頻編碼系統對處理器的要求非常高,一般的DSP和通用處理器難以達到性能要求。本系統選擇富士通公司最新的專用視頻編解碼芯片MB86H51,實時編解碼分辨率達到1080p的高清視頻。芯片具有壓縮率高,功耗低,體積小等優點。系統的控制設備由三塊FPGA芯片和ARM控制器共同完成。FPGA芯片分別負責視頻輸入輸出,碼流輸入輸出和主編解碼芯片的控制。ARM作為上層人機交互的控制器,向系統使用者提供操作界面,并與主控FPGA相連。方案實現了高清視頻的輸入,實時編碼和碼流存儲輸出等功能于一體,能夠編碼1080p的高清視頻并存儲在硬盤中。系統開發的工作難點在于FPGA的程序設計與調試工作。其次,詳細介紹了FPGA在系統中的功能實現,使用的方法和程序設計。使用VHDL語言編程實現I2C總線接口和接口控制功能,利用stratix系列FPGA內置的M4K快速存儲單元實現128K的命令存儲ROM,并對設計元件模塊化,方便今后的功能擴展。編程實現了PIO模式的硬盤讀寫和SDRAM接口控制功能,實現高速的數據存儲功能。利用時序狀態機編程實現主芯片編解碼控制功能,完成編解碼命令的發送和狀態讀取,并對設計思路,調試結果和FPGA資源使用情況進行分析。著重介紹設計中用到的最新芯片及其工作方式,分析設計過程中使用的最新技術和方法。有很強的實用價值。最后,論文對系統就不同的使用情況提出了可供改進的方案,并對與高清視頻相關的關鍵技術作了分析和展望。
上傳時間: 2013-07-26
上傳用戶:shanml
隨著信息產業的不斷發展,人們對數據傳輸速率要求越來越高,從而對數據發送端和接收端的性能都提出了更高的要求。接收機的一個重要任務就是在于克服各種非理想因素的干擾下,從接收到的被噪聲污染的數據信號中提取同步信息,并進而將數據正確的恢復出來。而數據恢復電路是光纖通信和其他許多類似數字通信領域中不可或缺的關鍵電路,其性能決定了接收端的總體性能。 目前,數據恢復電路的結構主要有“時鐘提取”和“過采樣”兩種結構。基于“過采樣”的數據恢復方法的關鍵是過采樣,即通過引入參考時鐘,并增加時鐘源個數的方式來代替第一種方法中的“時鐘提取”。與“時鐘提取”的數據恢復方法相比,基于“過采樣”的數據恢復方法在性能上還有較大的差距,但是后者擁有高帶寬、立即鎖存能力、較低的等待時間和更高的抖動容限,更易于通過數字的方法實現,實現更簡單,成本更低,并且這是一種數字化的模擬技術。如果能通過“過采樣”方法在普通的邏輯電路上實現622.08Mb/s甚至更高速率的數據恢復,并將它作為一個IP模塊來代替專用的時鐘恢復芯片,這無疑將是性能和成本的較好結合。 本文主要研究“過采樣”數據恢復電路的基本原理,通過全數字的設計方法,給出了在低成本可編程器件FPGA上實現數據恢復電路兩種不同的過采樣的實現方案,即基于時鐘延遲的過采樣和基于數據延遲的過采樣。基于時鐘延遲的過采樣數據恢復電路方案,通過測試驗證,其最高恢復的數據傳輸率可達到640Mb/s。測試結果表明,采用該方案實現的時鐘恢復電路可工作在光纖通信系統STM-4速率級,即622.08MHz頻率上,各方面指標基本符合要求。
上傳時間: 2013-04-24
上傳用戶:axxsa
基于AD9833的高精度可編程波形發生器系統設計:介紹一種基于AD9833的高精度可編程波形發生器系統解決方案,該系統具有可編程設置、波形頻率和峰峰值等功能,從而解決DDS輸出波形峰峰值不能直接
上傳時間: 2013-04-24
上傳用戶:ecooo
人臉識別技術繼指紋識別、虹膜識別以及聲音識別等生物識別技術之后,以其獨特的方便、經濟及準確性而越來越受到世人的矚目。作為人臉識別系統的重要環節—人臉檢測,隨著研究的深入和應用的擴大,在視頻會議、圖像檢索、出入口控制以及智能人機交互等領域有著重要的應用前景,發展速度異常迅猛。 FPGA的制造技術不斷發展,它的功能、應用和可靠性逐漸增加,在各個行業也顯現出自身的優勢。FPGA允許用戶根據自己的需要來建立自己的模塊,為用戶的升級和改進留下廣闊的空間。并且速度更高,密度也更大,其設計方法的靈活性降低了整個系統的開發成本,FPGA 設計成為電子自動化設計行業不可缺少的方法。 本文從人臉檢測算法入手,總結基于FPGA上的嵌入式系統設計方法,使用IBM的Coreconnect掛接自定義模塊技術。經過訓練分類器、定點化、以及硬件加速等方法后,能夠使人臉檢測系統在基于Xilinx的Virtex II Pro開發板上平臺上,達到實時的檢測效果。本文工作和成果可以具體描述如下: 1. 算法分析:對于人臉檢測算法,首先確保的是檢測率的準確性程度。本文所采用的是基于Paul Viola和Michael J.Jones提出的一種基于Adaboost算法的人臉檢測方法。算法中較多的是積分圖的特征值計算,這便于進一步的硬件設計。同時對檢測算法進行耗時分析確定運行速度的瓶頸。 2. 軟硬件功能劃分:這一步考慮市場可以提供的資源狀況,又要考慮系統成本、開發時間等諸多因素。Xilinx公司提供的Virtex II Pro開發板,在上面有可以供利用的Power PC處理器、可擴展的存儲器、I/O接口、總線及數據通道等,通過分析可以對算法進行細致的劃分,實現需要加速的模塊。 3. 定點化:在Adaboost算法中,需要進行大量的浮點計算。這里采用的方法是直接對數據位進行操作它提取指數和尾數,然后對尾數執行移位操作。 4. 改進檢測用的級聯分類器的訓練,提出可以迅速提高分類能力、特征數量大大減小的一種訓練方法。 5. 最后對系統的整體進行了驗證。實驗表明,在視頻輸入輸出接入的同時,人臉檢測能夠達到17fps的檢測速度,并且獲得了很好的檢測率以及較低的誤檢率。
上傳時間: 2013-04-24
上傳用戶:大融融rr
光纖水聽器自問世以來,在巨大的軍事價值和民用價值推動下得到了迅速發展,已逐漸從實驗室研究階段走向工程應用。同時隨著光纖水聽器的不斷發展,對水聲信號的檢測技術以及數字處理能力也提出了新的要求。論文在此背景下開展了一系列研究工作,并提出了利用FPGA(Field ProgrammableGate Array,現場可編程門陣列)實現光纖3×3耦合器解調算法的新思路。 目前干涉型光纖水聽器的解調一般采用PGC(Phase Generated Carrier,相位生成載波技術)技術和基于3×3光纖耦合器干涉的解調技術。PGC技術在解調過程中引入了載波信號,它對采樣率,激光器等的要求都較高,因此我們把目光投向3×3耦合器解調技術,文中對其解調原理進行了闡述,對采樣率的確定進行了討論,并對3×3耦合器三路輸出不對稱的情況進行了分析,最后在本文的結論部分提出了基于3×3耦合器解調的改良方案。 目前,光纖信號數字化解調的硬件實現采用DSP(Digital Signal Process,可編程數字信號處理器)信號處理機,與之相比,FPGA解調具有速度快、資源占用少、易于擴展等優勢。本文對FPGA與DSP、ASIC(application-specificintegrated circuit,專用集成電路)實現方案進行了對比,分析了適合利用FPGA實現的算法所應具備的特征;介紹了3×3耦合器解調算法中各個模塊的設計情況;分析了系統的工作情況,硬件的構造及芯片的選擇,最后驗證了利用FPGA可以實現3×3耦合器解調算法。
上傳時間: 2013-07-03
上傳用戶:love1314
隨著微電子技術和計算機技術的迅猛發展,尤其是現場可編程器件的出現,為滿足實時處理系統的要求,誕生了一種新穎靈活的技術——可重構技術。它采用實時電路重構技術,在運行時根據需要,動態改變系統的電路結構,從而使系統既有硬件優化所能達到的高速度和高效率,又能像軟件那樣靈活可變,易于升級,從而形成可重構系統。可重構系統的關鍵在于電路結構可以動態改變,這就需要有合適的可編程邏輯器件作為系統的核心部件來實現這一功能。 論文利用可重構技術和“FD-ARM7TDMLCSOC”實驗板的可編程資源實現了一個8位微程序控制的“實驗CPU”,將“實驗CPU”與實驗板上的ARMCPU構成雙內核CPU系統,并對雙內核CPU系統的工作方式和體系結構進行了初步研究。 首先,文章研究了8位微程序控制CPU的開發實現。通過設計實驗CPU的系統邏輯圖,來確定該CPU的指令系統,并給出指令的執行流程以及指令編碼。“實驗CPU”采用的是微程序控制器的方式來進行控制,因此進行了微程序控制器的設計,即微指令編碼的設計和微程序編碼的設計。為利用可編程資源實現該“實驗CPU”,需對“實驗CPU”進行VHDL描述。 其次,文章進行了“實驗CPU”綜合下載與開發。文章中使用“Synplicity733”作為綜合工具和“Fastchip3.0”作為開發工具。將“實驗CPU”的VHDL描述進行綜合以及下載,與實驗箱上的ARMCPU構成雙內核CPU,實現了基于可重構技術的雙內核CPU的系統。根據實驗板的具體環境,文章對雙內核CPU系統存在的關鍵問題,如“實驗CPU”的內存讀寫問題、微程序控制器的實現,以及“實驗CPU'’框架等進行了改進,并通過在開發工具中添加控制模塊和驅動程序來實現系統工作方式的控制。 最后,文章對雙核CPU系統進行了功能分析。經分析,該系統中兩個CPU內核均可正常運行指令、執行任務。利用實驗板上的ARMCPU監視用“實驗CPU”的工作情況,如模擬“實驗CPU”的內存,實現機器碼運行,通過串行口發送的指令來完成單步運行、連續運行、停止、“實驗CPU"指令文件傳送、“實驗CPU"內存修改、內存察看等工作,所有結果可顯示在超級終端上。該系統通過利用ARMCPU來監控可重構CPU,研究雙核CPU之間的通信,嘗試新的體系結構。
上傳時間: 2013-04-24
上傳用戶:royzhangsz
現場可編程門陣列(FPGA)是一種現場可編程專用集成電路,它將門陣列的通用結構與現場可編程的特性結合于一體,如今,FPGA系列器件已成為最受歡迎的器件之一。隨著FPGA器件的廣泛應用,它在數字系統中的作用日益變得重要,它所要求的準確性也變得更高。因此,對FPGA器件的故障測試和故障診斷方法進行更全面的研究具有重要意義。隨著FPGA器件的迅速發展,FPGA的密度和復雜程度也越來越高,使大量的故障難以使用傳統方法進行測試,所以人們把視線轉向了可測性設計(DFT)問題。可測性設計的提出為解決測試問題開辟了新的有效途徑,而邊界掃描測試方法是其中一個重要的技術。 本文對FPGA的故障模型及其測試技術和邊界掃描測試的相關理論與方法進行了詳細的探討,給出了利用布爾矩陣理論建立的邊界掃描測試過程的數學描述和數學模型。論文中首先討論邊界掃描測試中的測試優化問題,總結解決兩類優化問題的現有算法,分別對它們的優缺點進行了對比,進而提出對兩種現有算法的改進思想,并且比較了改進前后優化算法的性能。另外,本文還對FPGA連線資源中基于邊界掃描測試技術的自適應完備診斷算法進行了深入研究。在研究過程中,本文基于自適應完備診斷的思想對原有自適應診斷算法的性能進行了分析,并將獨立測試集和測試矩陣的概念引入原有自適應診斷算法中,使改進后的優化算法能夠簡化原算法的實現過程,并實現完備診斷的目標。最后利用測試仿真模型證明了優化算法能夠更有效地實現完備診斷的目標,在緊湊性指標與測試復雜性方面比現在算法均有所改進,實現了算法的優化。
上傳時間: 2013-06-30
上傳用戶:不挑食的老鼠
數字射頻存儲器(Digital Radio FreqlJencyr:Memory DRFM)具有對射頻信號和微波信號的存儲、處理及傳輸能力,已成為現代雷達系統的重要部件。現代雷達普遍采用了諸如脈沖壓縮、相位編碼等更為復雜的信號處理技術,DRFM由于具有處理這些相干波形的能力,被越來越廣泛地應用于電子對抗領域作為射頻頻率源。目前,國內外對DRFM技術的研究還處于起步階段,DRFM部件在采樣率、采樣精度及存儲容量等方面,還不能滿足現代雷達信號處理的要求。 本文介紹了DRFM的量化類型、基本組成及其工作原理,在現有的研究基礎上提出了一種便于工程實現的設計方法,給出了基于現場可編程門陣列(Field Programmable Gate Array FPGA)實現的幅度量化DRFM設計方案。本方案的采樣率為1 GHz、采樣精度12位,具體實現是采用4個采樣率為250 MHz的ADC并行交替等效時間采樣以達到1 GHz的采樣率。單通道內采用數字正交采樣技術進行相干檢波,用于保存信號復包絡的所有信息。利用FPGA器件實現DRFM的控制器和多路采樣數據緩沖器,采用硬件描述語言(Very High Speed}lardware Description Language VHDL)實現了DRFM電路的FPGA設計和功能仿真、時序分析。方案中采用了大量的低壓差分信號(Low Voltage Differential Signaling LVDS)邏輯的芯片,從而大大降低了系統的功耗,提高了系統工作的可靠性。本文最后對采用的數字信號處理算法進行了仿真,仿真結果證明了設計方案的可行性。 本文提出的基于FPGA的多通道DRFM系統與基于專用FIFO存儲器的DRFM相比,具有更高的性能指標和優越性。
上傳時間: 2013-06-01
上傳用戶:lanwei
目前的國內的CCD高清攝相頭能夠輸出一組視頻信號和數字圖像信號,雖然視頻信號能夠直接在監視器顯示,但是輸出的數字圖像信號占用存儲空間太大,不便于進行傳輸。本文設計了一種基于FPGA的數字圖像壓縮卡。 在過去的十幾年中,國際標準化組織制訂了一系列的國際視頻編碼標準并廣泛應用到各種領域。It.264/AVC是ITU-T和ISO聯合推出的新標準,采用了近幾年視頻編碼方面的先進技術,以較高編碼效率和網絡友好性成為新一代國際視頻編碼標準。 新發展的H.264/AVC比原有的視頻編碼標準大幅度提高了編碼效率,但其運算復雜度也大大增加,本文簡要分析了H.264/AVC的復雜度及其優化的途徑,給出了主要模塊的優化算法實驗結果。 H.264/AVC仍基于以前視頻編碼標準的運動補償混合編碼方案,主要不同有:增強的運動預測能力,準確匹配的較小塊變換,自適應環內濾波器,增強的熵編碼。測試結果表明這些新特征使H.264/AVC編碼器提高50%編碼效率的同時,增加了一個數量級的復雜度。實際中恰當地使用H.264/AVC編碼工具可以較低的實現復雜度得到與復雜配置相當的編碼效率。故實際編碼系統開發需要在運算復雜性和編碼效率之間進行折衷、兼顧考慮。H.264/AVC引入的新編碼特征既增加基本模塊的復雜度,也成倍增加算法的復雜度。針對它們的作用和實現方法的不同,可采用不同的硬件實現方法。本文基于上述思路進行優化,具體的工作包括:針對去塊濾波的復雜性,本文提出一種適合硬件實現的算法,使其在節省了資源的同時,很好的達到了標準所定義的性能。針對變換量化的復雜性,本文提出一種既滿足整體的硬件流水結構,又極大的降低了硬件資源的實現方法。針對碼率控制的實現,本文提出了一種有別于傳統實現方式的算法,在保證實時性的同時,極大的提高了編碼器的性能。本文基于上述算法還進行Baseline Profile編碼器的研究,給出了一種實時編碼器結構,實現了對高清圖像格式(720P)的實時編碼,并將其和當前業界先進水平進行了對比,表明本文所實現得結構能夠達到當前業界的先進水平。
上傳時間: 2013-07-23
上傳用戶:yepeng139