準(zhǔn)確量化和預(yù)測(cè)陸地生態(tài)系統(tǒng)碳水通量對(duì)于理解陸氣間相互作用,預(yù)測(cè)未來氣候變化和控制溫室效應(yīng)具有重要意義。通量觀測(cè)和模型模擬是目前研究碳水通量的兩種主要方法。通量觀測(cè)精度較高,但觀測(cè)范圍局限、站點(diǎn)分布不均勻,易受環(huán)境影響,難以區(qū)域擴(kuò)展;模型模擬可實(shí)現(xiàn)不同尺度參量估算,但由于理想化假設(shè)、模型參數(shù)和驅(qū)動(dòng)數(shù)據(jù)等限制,導(dǎo)致其模擬結(jié)果往往與真實(shí)值存在較大偏差。模型-數(shù)據(jù)融合方法主要是通過參數(shù)估計(jì)和數(shù)據(jù)同化兩種技術(shù)集成觀測(cè)和模型信息,建立兩者相互制約調(diào)節(jié)的優(yōu)化關(guān)系,以提高模型結(jié)果與真實(shí)值之間的匹配程度?;谠撍悸?,本研究在地面觀測(cè)數(shù)據(jù)、遙感衛(wèi)星資料以及相關(guān)氣候環(huán)境數(shù)據(jù)基礎(chǔ)上,重點(diǎn)突破全球動(dòng)態(tài)植被模型(Lund-Potsdam-Jena Dynamic Globa Vegetation Model.LPJ-DGVM)敏感參數(shù)優(yōu)化方法,獲取適宜中國的參數(shù)化方案:在此基礎(chǔ)上,引入數(shù)據(jù)同化算法,將遙感衛(wèi)星產(chǎn)品信息與模型相融合,在模擬過程中不斷校正原有模型模擬軌跡,提高模型適用性。將以上改進(jìn)的模型推廣至中國區(qū)域,實(shí)現(xiàn)對(duì)20002015年中國地區(qū)總初級(jí)生產(chǎn)力(Gross Primary Productivity GPP)和敬發(fā)(Evapotranspiration,ET的空間格局模擬及分析。主要結(jié)論如下1)將LP」DGwM中所選出的22個(gè)可調(diào)參數(shù)(涉及光合、呼吸、水平衡異速生長、死亡、建立以及土壤和掉落物分解共七個(gè)作用領(lǐng)域)在各自取值范圍內(nèi)隨機(jī)獲得不同的參數(shù)組合,結(jié)果表明22個(gè)參數(shù)可引起GPP和ET模擬結(jié)果產(chǎn)生較大的不確定性,尤其集中在生長季。所有站點(diǎn)GPP相對(duì)不確定性(Relative Uncertainty,RU)基本保持在09-1.25之間,不具有明顯的年際變異性:ET相對(duì)不確定性RU月變化趨勢(shì)明顯,且基本處于0.5以下,明顯低于GPP,說明所篩選的22個(gè)參數(shù)對(duì)GP模擬產(chǎn)生的影響更為顯著。
標(biāo)簽: 數(shù)據(jù)融合
上傳時(shí)間: 2022-03-16
上傳用戶:shjgzh
隨著杜會(huì)和經(jīng)濟(jì)的發(fā)展,環(huán)境水污染現(xiàn)象也日趨嚴(yán)重,迫切需要環(huán)境水質(zhì)多參數(shù)監(jiān)測(cè)與智能分析系統(tǒng),以為環(huán)境監(jiān)測(cè)、管理和控制提供科學(xué)的手段。水質(zhì)多組分檢測(cè)涉及到多傳感器數(shù)據(jù)融合、計(jì)算機(jī)技術(shù)、電化學(xué)分析和人工智能等多學(xué)科的交叉,在眾多領(lǐng)域有著廣泛的應(yīng)用。本論文研究環(huán)境水質(zhì)檢測(cè)與智能分析系統(tǒng),論文的主要工作包括1)基于最小二乘支持向量機(jī)的在線自適應(yīng)加權(quán)數(shù)據(jù)融合算法多傳感器數(shù)據(jù)融合由于能夠利用互補(bǔ)和冗余的信息,顯著提高系統(tǒng)的可靠性而得到了廣泛應(yīng)用,而數(shù)據(jù)融合的關(guān)鍵問題是融合算法。本文深入研究了多傳感器數(shù)據(jù)融合理論的基礎(chǔ)上,針對(duì)傳統(tǒng)融合算法研究存在的問題,提出了一種基于最小二乘支持向量機(jī)的在線自適應(yīng)加權(quán)數(shù)據(jù)融合算法,并應(yīng)用到水質(zhì)在線檢測(cè)過程中,不僅縮短了訓(xùn)練的時(shí)間,而且提高了融合的可靠性和靈活性2)提出了一種離子傳感器的基于最小二乘支持向量機(jī)的自校正方法:由于離子傳感器的非線性、漂移和交叉敏感性等影響了其檢測(cè)精度和可靠性,難以進(jìn)行連續(xù)在線檢測(cè)。以硝酸根離子傳感器為例,研究其自校正方法,以適應(yīng)動(dòng)態(tài)環(huán)境的連續(xù)監(jiān)測(cè)根據(jù)實(shí)驗(yàn)數(shù)據(jù),詳細(xì)分析了硝酸根離子傳感器的響應(yīng)特性,并考慮了零點(diǎn)和時(shí)間漂移,提出了一種基于最小二乘支持向量機(jī)硝酸根離子傳感器的自校正方法,給出了詳細(xì)描述和分析。3)離子傳感器故障檢測(cè)的小波支持向量機(jī)特征提取和支持向量機(jī)分類方法在線連續(xù)檢測(cè)的應(yīng)用要求離子傳感器必須具有很高的可靠性,即能夠及時(shí)準(zhǔn)確地判斷出離子傳感器的故障。本文采用小波支持向量機(jī)提取各傳感器故障特征,再用支持向量機(jī)對(duì)故障進(jìn)行分類,實(shí)現(xiàn)對(duì)各離子傳感器的故障診斷。
標(biāo)簽: 數(shù)據(jù)融合
上傳時(shí)間: 2022-03-18
上傳用戶:
隨著電力電子技術(shù)的飛速發(fā)展,高頻開關(guān)電源由于其諸多優(yōu)點(diǎn)已經(jīng)廣泛深入到國防、工業(yè)、民用等各個(gè)領(lǐng)域,與人們的工作、生活密切相關(guān),由此引發(fā)的電網(wǎng)諧波污染也越來越受到人們的重視,對(duì)其性能,體積,效率,功率密度等的要求也越來越高。因此,研究具有高功率因數(shù)、高效率的ACDC變換技術(shù),對(duì)于抑制諧波污染、節(jié)釣?zāi)茉醇皩?shí)現(xiàn)綠色電能變換具有重要意義通過分析目前功率因數(shù)校正PFC)技術(shù)與直流變換(DcDC)技術(shù)的研究現(xiàn)狀,采用了具有兩級(jí)結(jié)構(gòu)的AcDc變換技術(shù),對(duì)PFC控制技術(shù),直流變換軟開關(guān)實(shí)現(xiàn)等內(nèi)容進(jìn)行了研究。前級(jí)PFC部分采用先進(jìn)的單周期控制技術(shù),通過對(duì)其應(yīng)用原理、穩(wěn)定性與優(yōu)勢(shì)性能的研究,實(shí)璄了主電路及控電路的參數(shù)設(shè)計(jì)與優(yōu)化,簡化了PFC控制電路結(jié)構(gòu)、根據(jù)控制電路特點(diǎn)與系統(tǒng)環(huán)路穩(wěn)性要求,完成了電流環(huán)路與整個(gè)控制環(huán)路設(shè)計(jì),確保了系統(tǒng)穩(wěn)定性,提高了系統(tǒng)動(dòng)態(tài)響應(yīng)。通過建立電路閉環(huán)仿真模型,驗(yàn)證了單周期控制抑制輸入電壓與負(fù)載擾動(dòng)的優(yōu)勢(shì)性能及連續(xù)功率因數(shù)校正的優(yōu)點(diǎn),優(yōu)化了電路參數(shù)后級(jí)直流變換主電路采用LLC諧振拓?fù)?,通過變頻控制使直流變換環(huán)節(jié)具有軾開關(guān)特性。分析了不同開關(guān)頻率范圍內(nèi)電路工作原理,并建立了基波等效電路,采用基波分析法對(duì)VLc需城電路的電反增益性,輸入阻抗持性進(jìn)行了研究,確定了電路軟開關(guān)工作范圖。以基波分析結(jié)果為基礎(chǔ)進(jìn)行了合理的電路參數(shù)優(yōu)化設(shè)計(jì),保證了直流變換環(huán)節(jié)在全輸入電壓范圍、全負(fù)載范圍內(nèi)能實(shí)現(xiàn)橋臂開關(guān)管零電壓開通zVS},較大范圍內(nèi)邊整流二極管零電流關(guān)斷區(qū)CS),并將諧振電路中的電壓電流應(yīng)力降到最小,極大的提高了系統(tǒng)效率同時(shí),為了提高系統(tǒng)功率密度,選擇了優(yōu)化的磁性元器件結(jié)構(gòu),實(shí)現(xiàn)了諧振感性元件與變壓器的磁性器件集成,大大減小了變換電路的體積在理論研究與參數(shù)設(shè)計(jì)的基礎(chǔ)上,搭建了實(shí)驗(yàn)樣機(jī),分別對(duì)PFC部分和DcDC部分進(jìn)行了實(shí)驗(yàn)驗(yàn)證與結(jié)果分析。經(jīng)實(shí)驗(yàn)驗(yàn)證ACDc變換電路功率因數(shù)在0.988以上,直瓿變換電路能實(shí)現(xiàn)全范圖軟開關(guān),實(shí)現(xiàn)了高效率AcDC變換。關(guān)鍵詞:ACDC變換:功率因數(shù)校正:;高效率;LLC諧振電路:單周期控制
上傳時(shí)間: 2022-03-24
上傳用戶:
IC-Ucc28950改進(jìn)的相移全橋控制設(shè)計(jì)UcC28950是T公司進(jìn)一步改進(jìn)的相移全橋控制C,它比原有標(biāo)準(zhǔn)型UCC2895主要改進(jìn)為Zvs能力范圍加寬,對(duì)二次側(cè)同步整流直接控制,提高了輕載空載轉(zhuǎn)換效率,而且此時(shí)可以O(shè)N/OFF控制同步整流成為綠色產(chǎn)品。既可以作電流型控制,也可以作電壓型控制。增加了閉環(huán)軟啟動(dòng)及使能功能。低啟動(dòng)電流,逐個(gè)周期式限流過流保護(hù),開關(guān)頻率可達(dá)1MHz UCC28950基本應(yīng)用電路如圖1所示,內(nèi)部等效方框電路如圖2所示。*啟動(dòng)中的保護(hù)邏輯UCC28950啟動(dòng)前應(yīng)該首先滿足下列條件:*VDD電壓要超過UvLo閾值,73V*5V基準(zhǔn)電壓已經(jīng)實(shí)現(xiàn)*芯片結(jié)溫低于140℃。*軟啟動(dòng)電容上的電壓不低于0.55V。如果滿足上述條件,一個(gè)內(nèi)部使能信號(hào)EN將產(chǎn)生出來,開始軟啟動(dòng)過程。軟啟動(dòng)期間的占空比,由Ss端電壓定義,且不會(huì)低于由Twm設(shè)置的占空比,或由逐個(gè)周期電流限制電路決定的負(fù)載條件電壓基準(zhǔn)精確的(±1.5%5V基準(zhǔn)電壓,具有短路保護(hù),支持內(nèi)部電路,并能提供20mA外部輸出電流,其用于設(shè)置DCDC變換器參數(shù),放置一個(gè)低ESR,ESL瓷介電容(1uF-2.2uF旁路去耦,從此端接到GND,并緊靠端子,以獲得最佳性能。唯一的關(guān)斷特性發(fā)生在C的VDD進(jìn)入U(xiǎn)VLo狀態(tài)。*誤差放大器(EA+EA,COMP)誤差放大器有兩個(gè)未提交的輸入端,EA+和EA-。它具有3MHz帶寬具有柔性的閉環(huán)反饋環(huán)。EA+為同相端,EA-為反向端。COMP為輸出端輸入電壓共模范圍保證在0.5V-3.6V。誤差放大器的輸出在內(nèi)部接到pWM比較器的同相輸入端,誤差放大器的輸出范圍為0.25V4.25V,遠(yuǎn)超出PwM比較器輸入上斜信號(hào)范圍,其從0.8v-2.8V。軟啟動(dòng)信號(hào)作為附加的放大器的同相輸入,當(dāng)誤差放大器的兩個(gè)同相輸入為低,是支配性的輸入,而且設(shè)置的占空比是誤差放大器輸出信號(hào)與內(nèi)部斜波相比較后放在PWM比較器的輸入處。
標(biāo)簽: ucc2895
上傳時(shí)間: 2022-03-31
上傳用戶:
內(nèi)容簡介 全書由“幾何光學(xué)”、“像差理論”和“光學(xué)設(shè)計(jì)”這三個(gè)相對(duì)獨(dú)立而又相互聯(lián)系的部分所構(gòu)成。*部分是“幾何光學(xué)”,包括高斯光學(xué)的基本內(nèi)容以及光束限制與光能計(jì)算、光線的光路計(jì)算等;第二部分是“像差理論”,該部分系統(tǒng)地講述了像差概念和現(xiàn)象、常用校正手段、初級(jí)像差理論、波像差的基本概念及其與幾何像差、波面檢測(cè)的關(guān)系;第三部分是“光學(xué)設(shè)計(jì)”,包括經(jīng)典光學(xué)系統(tǒng)原理、特殊(現(xiàn)代)光學(xué)系統(tǒng)的原理與設(shè)計(jì)特點(diǎn)、特殊面形在光學(xué)系統(tǒng)中的應(yīng)用、像質(zhì)評(píng)價(jià)和光學(xué)系統(tǒng)優(yōu)化設(shè)計(jì)、光學(xué)系統(tǒng)工程圖紙畫法等內(nèi)容,有利于學(xué)生把握光學(xué)系統(tǒng)設(shè)計(jì)的全過程,并了解現(xiàn)代光學(xué)新動(dòng)態(tài),拓寬知識(shí)面。目 錄第一部分 幾何光學(xué) 第1章 幾何光學(xué)的基本概念和基本定律 1.1 發(fā)光點(diǎn)、光線和光束 1.2 光線傳播的基本定律、全反射 1.3 費(fèi)馬原理 1.4 物、像的基本概念和完善成像條件 1.5 幾何光學(xué)基本定律回顧:歸納和演繹 第2章 球面和球面系統(tǒng) 2.1 概念與符號(hào)規(guī)則 2.2 單個(gè)折射球面成像 2.3 反射球面 2.4 共軸球面系統(tǒng) ...第二部分 像差理論 第7章 幾何像差 7.1 球差 7.2 單個(gè)折射球面的球差特征 7.3 軸外像差概述 7.4 正弦條件與等暈條件 7.5 彗差 7.6 像散和像面彎曲 7.7 畸變 7.8 位置色差 7.9 倍率色差 7.10 應(yīng)用舉例 ... 第三部分 光學(xué)設(shè)計(jì) 第12章 典型光學(xué)系統(tǒng) 12.1 眼睛 12.2 放大鏡 12.3 顯微鏡與照明系統(tǒng) 12.4 望遠(yuǎn)鏡系統(tǒng) 12.5 攝影光學(xué)系統(tǒng) 12.6 放映系統(tǒng) .....
標(biāo)簽: 幾何光學(xué)
上傳時(shí)間: 2022-04-13
上傳用戶:canderile
文章針對(duì)800×600象素的 TFT LCD,介紹了LCD顯示原理、TFT元件特性、TFT-LCD的結(jié)構(gòu)及驅(qū)動(dòng)原理,重點(diǎn)進(jìn)行了 TFT-LCD周邊驅(qū)動(dòng)電路設(shè)計(jì),包括柵(行)驅(qū)動(dòng)電路和源〔列)驅(qū)動(dòng)電路。柵驅(qū)動(dòng)芯片,內(nèi)部主要包括邏輯控制電路、雙向移位寄存器、電平位移電路和4-Level輸出電路。本文設(shè)計(jì)了一種多模式工作的柵驅(qū)動(dòng)電路,其中控制電路包含左右移位控制、輸入輸出控制、分段清零、工作模式選擇,且相互之間必須進(jìn)行互相配合??筛鶕?jù)應(yīng)用場合的不同,而選擇不同的工作模式。列驅(qū)動(dòng)芯片,首先分析其工作原理,并對(duì)內(nèi)部兩個(gè)關(guān)鍵電路進(jìn)行設(shè)計(jì):并行輸入串行輸出電路和用于實(shí)現(xiàn)λ校正的DA變換電路。并采用兩種方式實(shí)現(xiàn)了DA轉(zhuǎn)換,一種是利用高低電壓組合;另一種是采用高低位譯碼電路來實(shí)現(xiàn)。在此基礎(chǔ)上,為了能夠降低列驅(qū)動(dòng)芯片的功耗,對(duì)列驅(qū)動(dòng)芯片的結(jié)構(gòu)進(jìn)行了改進(jìn),并對(duì)改進(jìn)后的緩沖電路進(jìn)行了設(shè)計(jì),采用 Hspice對(duì)芯片內(nèi)部的模塊電路進(jìn)行仿真,仿真結(jié)果表明,所設(shè)計(jì)的驅(qū)動(dòng)芯片基本能夠滿足所需的要求,并對(duì)柵驅(qū)動(dòng)電路進(jìn)行版圖設(shè)計(jì)關(guān)鍵詞:TFT LCD電平位移柵驅(qū)動(dòng)列驅(qū)動(dòng)科學(xué)技術(shù)的發(fā)展日新月異,顯示技術(shù)也在發(fā)生一場革命,隨著顯示技術(shù)的突破及市場需求的急劇增長,使得以液晶顯示(LCD)為代表的平板顯示(FPD)技術(shù)迅速崛起。目前競爭最激烈的平板顯示器有四個(gè)品種:場致發(fā)射平板顯示器(FED)、等離子體平板顯示器(PDP)、薄膜晶體管液晶平板顯示器(TFT-ICD)和有機(jī)電致發(fā)光顯示器(OLED)。而由于 TFT-LCD在亮度、對(duì)比度、功耗、壽命、體積和重量等方面的優(yōu)勢(shì),從而得到廣泛的關(guān)注和應(yīng)用
標(biāo)簽: tft lcd 驅(qū)動(dòng) 芯片
上傳時(shí)間: 2022-04-22
上傳用戶:
恒流源(vCCS)的研究歷經(jīng)數(shù)十年,從早期的晶體管恒流源到現(xiàn)在的集成電路恒流源恒定電流在各個(gè)領(lǐng)域的廣泛使用激發(fā)起人們對(duì)恒流源的研究不斷深入和多樣化。穩(wěn)恒電流在加速器中的使用是加速器結(jié)構(gòu)改善的一個(gè)標(biāo)志。從早期的單一依靠磁場線圈到加入勻場環(huán),到校正線圈的使用,束流輸運(yùn)系統(tǒng)的改進(jìn)有效地提高了束流的品質(zhì),校正線圈是光刻于印制電路板上的導(dǎo)線圈,將其按照方位角放置在加速腔內(nèi),通電后,載流導(dǎo)線產(chǎn)生的橫向磁場就可以起到校正偏心束流的作用。顯然,穩(wěn)定可調(diào)的恒流源是校正線圈有效工作的必要條件。針對(duì)現(xiàn)在加速粒子能量的提高,對(duì)校正線圈提出了新的供電需求,本文就這一需求研究了基于功率運(yùn)算放大器的兩種壓控恒流源,為工程應(yīng)用做技術(shù)儲(chǔ)備。1設(shè)計(jì)思路用于校正線圈的恒流源供聚焦和補(bǔ)償時(shí)使用輸出功率不大,但要求調(diào)節(jié)精度高,穩(wěn)定性好,紋波小。具體技術(shù)參數(shù)為:輸出電流0~5A調(diào)節(jié)范圍0.1~5.0A;調(diào)節(jié)精度5mA;負(fù)載電阻35;紋波穩(wěn)定度優(yōu)于1(相對(duì)5A);基準(zhǔn)電壓模塊型號(hào)為REFo1而常用作恒流電源的電真空器件穩(wěn)定電流建立時(shí)間長,場效應(yīng)管夾斷電壓高、擊穿電壓低恒流區(qū)域窄,因此,我們選取了體積小效率高電流調(diào)節(jié)范圍寬的放大器恒流源作為研究方向?qū)嶒?yàn)基本的設(shè)計(jì)思路是通過電源板將市電降壓、整流、濾波后送入高精度電壓基準(zhǔn)源得到直流電壓,輸入功率運(yùn)算放大器,在輸出端得到放大的電流輸出,如圖1所示。
標(biāo)簽: 運(yùn)算放大器
上傳時(shí)間: 2022-04-24
上傳用戶:xsr1983
ContentsMIPI是什么?o D-PHY物理層特點(diǎn)?МIРI 的數(shù)據(jù)傳送oDSI&CSI應(yīng)用MIPI:手機(jī)產(chǎn)業(yè)處理界面MIPI協(xié)議是手機(jī)行業(yè)的領(lǐng)導(dǎo)者倡導(dǎo)一個(gè)開放的移動(dòng)接口標(biāo)準(zhǔn)MIPI Spec:DCS-顯示命令接口DBI-顯示總線接口DPI-顯示像素接口DSI一顯示串行接口CSI一顯示攝像接口D-PHY物理層MIPI特點(diǎn)低功耗模式·動(dòng)態(tài)調(diào)整到低功耗模式、高速傳送模式和低信號(hào)擺幅模式。高速模式每通道可以傳送500-1000Mbps低成本物理層EMI(抗輻射)數(shù)據(jù)包報(bào)頭(4 bytes)數(shù)據(jù)標(biāo)識(shí)符(DI*1byte:包含虛擬數(shù)據(jù)通道[7:6]和數(shù)據(jù)類型[5:0].,數(shù)據(jù)包*2byte:要傳送的數(shù)據(jù),長度固定兩個(gè)字節(jié)。誤差校正碼(ECC)"1byte:可以把兩個(gè)位的錯(cuò)誤糾正例程數(shù)據(jù)包報(bào)頭(4 bytes)數(shù)據(jù)標(biāo)識(shí)符(Di)*1byte:包含虛擬數(shù)據(jù)通道[7:6]和數(shù)據(jù)類型[5:0].字?jǐn)?shù)(WC)*2byte:傳送數(shù)據(jù)的長度,固定為兩個(gè)字節(jié)錯(cuò)誤校驗(yàn)碼(ECC)*1byte:可以修復(fù)兩個(gè)位的錯(cuò)誤有效傳送數(shù)據(jù)(0~65535 bytes)最大字節(jié)-2^16.數(shù)據(jù)包頁腳(2 bytes):校驗(yàn)如果數(shù)據(jù)包的有效長度為0,那么校驗(yàn)位為FFFFh如果校驗(yàn)碼不能計(jì)算,那么校驗(yàn)碼的值為0000h數(shù)據(jù)包的長度:e4+(0-65535)+2-6~ 65541 bytesSync Event(H Start,H End,v Start,V End),Data Type =xx 0001(x1h)同步事件是兩個(gè)字的數(shù)據(jù)包(1個(gè)字節(jié)的指令和一個(gè)字節(jié)的校驗(yàn),因些他們可以精確的表示同步事件的開始和結(jié)束.干單個(gè)司步開始或同步結(jié)束事件的長度和位置在前面的圖中有說明。同步事件的定義如下:Data Type= 00 0001(01h)場同步開始Data Type= 01 0001(11h)場同步結(jié)束Data Type= 10 0001(21b)行同步開始.Data Type= 11 0001(31h)行同步結(jié)束為了盡可能精確的體理一個(gè)同步事件,那么開始標(biāo)識(shí)位必須放在第一位,結(jié)束標(biāo)識(shí)位必須放在最后一位,行同步也是一樣。同步事件的開始和結(jié)束應(yīng)該是成對(duì)出現(xiàn)的,假如只有一個(gè)同步事件(通常是開始),那么這個(gè)數(shù)據(jù)也是可以傳送出去的。
標(biāo)簽: mipi
上傳時(shí)間: 2022-05-08
上傳用戶:
本書是一本介紹開關(guān)電源理論與工程設(shè)計(jì)相結(jié)合的工具書,介紹了電源在系統(tǒng)中的作用、電源設(shè)計(jì)流程、開關(guān)電源設(shè)計(jì)、開關(guān)電源與線性電源的比較、改善開關(guān)電源效率的整形技術(shù)。重點(diǎn)介紹了開關(guān)電源電路拓?fù)涞倪x取、變壓器和電感設(shè)計(jì)、功率驅(qū)動(dòng)電路、反饋補(bǔ)償參數(shù)的設(shè)計(jì)、保護(hù)電路。對(duì)減少開關(guān)電源損耗的先進(jìn)技術(shù),如同步整流技術(shù)、無損吸收電路、波形整形技術(shù),也作了深入的介紹。另外,通過大量實(shí)例,介紹了開關(guān)電源的設(shè)計(jì)方法,還介紹了功率因數(shù)校正、印制電路設(shè)計(jì)、熱設(shè)計(jì)、噪聲控制和電磁干擾抑制等內(nèi)容。
標(biāo)簽: 開關(guān)電源
上傳時(shí)間: 2022-05-17
上傳用戶:slq1234567890
PFC基礎(chǔ)知識(shí)-PF的定義1功率因數(shù)(Power Factor)的定義是指輸入有功功率(p)和視在功率(S)的比值;線性電路功率因數(shù)可用Cos表示,為正弦電流與正弦電壓的相位差;但是由于整流電路中二極管的非線性,導(dǎo)致輸入電流為嚴(yán)重的非正弦波形,用cosp已不能表示整流電路的功率因數(shù);常規(guī)直接整流電路的濾波電容使輸出電壓平滑,但卻使輸入電流變?yōu)榧饷}沖,并產(chǎn)生高次諧波分量。輸入電流波形變,導(dǎo)致功率因數(shù)下降,污染電網(wǎng),甚至造成電子設(shè)備損壞。引入功率因數(shù)校正是必要的利用功率因數(shù)校正技術(shù)可A/全跟蹤交流輸入電壓波形,流輸入電流波形完使輸入電流波形皇純正弦波,并且與輸入電壓波形相位,,此時(shí)整流器的貨載可等效為純電阻。根據(jù)常用功率因數(shù)校正方法可分為有源功率因數(shù)校正(APFC)技術(shù)與無源功率因數(shù)校正(PPFC)技術(shù)。它置于橋式整流器與濾波用電解電容器之間,實(shí)際上是一種DC-DC變換器。無源功率因數(shù)校正是利用電感和電容組成濾波器,對(duì)輸入電容進(jìn)行移相和整形。有源功率因數(shù)校正(APFC:Active Power Factor Correction),在負(fù)載即電力電子裝置本身的整流器和濾波電容之間增加一個(gè)功率變換電路,將整流器的輸入電流校正成為與電網(wǎng)電壓同相位的正弦波,消除了諧波和無功電流,因而將電網(wǎng)功率因數(shù)提高到近似為1.APFC電路常用拓?fù)洌荷龎菏剑˙oost)降壓式(Buck)升/降壓式(Buck/Boost)反激式(Fly back)APFC電路形式:單極式 雙極式單相PFC 三相PFCBoost變換電路是有源功率因數(shù)校正器主回路拓?fù)涞臉O好選擇。優(yōu)點(diǎn):輸入電流連續(xù),因而產(chǎn)生低的傳導(dǎo)噪聲和最好的輸入電流波形;缺點(diǎn):需要比輸入峰值電壓還要高的輸出電壓。
標(biāo)簽: pfc
上傳時(shí)間: 2022-05-28
上傳用戶:
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1