國(guó)標(biāo)類相關(guān)專輯 313冊(cè) 701MGB-T 2471-1995 電阻器和電容器優(yōu)先數(shù)系.pdf
標(biāo)簽:
上傳時(shí)間: 2014-05-05
上傳用戶:時(shí)代將軍
家 庭 總 線 是 智 能 家 居 實(shí) 現(xiàn) 的 重 要 基 礎(chǔ) . 是 住 宅 內(nèi) 部 的 神 經(jīng) 系 統(tǒng) . 其 主 要 作 用 是 連 接 家 中的各 種 電子 、 電氣 設(shè) 備 . 負(fù)責(zé) 將 家 庭 內(nèi) 的 各 種 通 信 設(shè) 備 ( 包 括 安 保 、 電話 、 家 電 、 視 聽 設(shè) 備 等 )連 接 在 一 起 . 形 成 一 個(gè) 完 整 的家 庭 網(wǎng) 絡(luò) 。 日 本 是 較 早 推 動(dòng) 智 能 家 居 發(fā) 展 的 國(guó) 家 之 一 , 它 較 早 地 提 出 了 家庭 總線 系統(tǒng) (H O m e B u S S Y S t e m , 簡(jiǎn)稱H B S ) 的概念 . 成 立 了 家庭 總線 (H B S )研 究會(huì) . 并 在 郵政省和 通 產(chǎn) 省 的指 導(dǎo) 下 組 成 了H B S 標(biāo) 準(zhǔn)委 員 會(huì) , 制定 了 日 本 的H B s 標(biāo) 準(zhǔn) 。 按 照 該 標(biāo) 準(zhǔn) , H B S 系統(tǒng) 由一 條 同 軸 電 纜 和 4 對(duì) 雙 絞 線 構(gòu) 成 , 前 者 用 于 傳 輸 圖 像 信 息 . 后者 用 于 傳輸語 音 、 數(shù)據(jù)及 控制信 號(hào) 。 各 類家用 設(shè) 備 與 電氣 設(shè) 備 均 按 一 定 方式 與H B S 相 連 , 這 些 電氣設(shè) 備 既 可 以在 室 內(nèi)進(jìn) 行 控制 . 也 可 在異地 通 過 電話進(jìn)行 遙 控 。 為適 應(yīng) 大型 居住社 區(qū) 的需 要 , 1 9 8 8 年年初 , 日 本住 宅信息 化推進(jìn)協(xié)會(huì) 又 推 出 了 超級(jí) 家庭總 線 (S u p e r H0 m e B u s S y s t e m , 簡(jiǎn) 稱S - H B S ) , 它適 用 于 更 大 的范 圍 . 因 為一 個(gè)S - H B s 系統(tǒng)可 掛接 數(shù)千個(gè)家庭 內(nèi)部 網(wǎng) 。 家庭 智能化要 求諸 多家 電和 網(wǎng)絡(luò)能夠彼此 相容 . 總線協(xié) 議是 其精髓 所 在 , 只 有接 E l 暢通 , 家 電才能 “ 聽懂 ” 人 發(fā) 出的指令 , 因此 總線標(biāo)準(zhǔn) 的物理 層 接 口 形 式 是 智能 家居 亟 待解決 的重 要 問題 之 一 。 目前 比 較成型 的總線標(biāo) 準(zhǔn) 協(xié) 議 主 要 是 美 國(guó)公 司 提 出 的 , 包 括E c h e l o n 公 司 I)~L o n W o r k s 協(xié)議 、 電子 工 業(yè) 協(xié) 會(huì) (E I A ) 的C E 總線協(xié) 議 (C EB u S ) 、 S m a r t Ho u s e L P 的智 能屋 協(xié) 議 和×一 1 0 公 司 的X 一 1 0 協(xié) 議等。 這 些 協(xié) 議 各 有 優(yōu) 劣 。
標(biāo)簽: 智能家居
上傳時(shí)間: 2022-03-11
上傳用戶:
心血管系統(tǒng)疾病是現(xiàn)今世界上發(fā)病率和死亡率最高的疾病之一。T波交替(T-wavealtemans,TWA)作為一種非穩(wěn)態(tài)的心電變異性現(xiàn)象,是指心電T波段振幅、形態(tài)甚至極性逐拍交替變化。大量研究表明,TWA與室性心律失常、心臟性猝死等有直接密切的關(guān)系,已成為一種無創(chuàng)獨(dú)立性預(yù)測(cè)指標(biāo)。隨著數(shù)字信號(hào)處理技術(shù)和計(jì)算機(jī)技術(shù)的迅速發(fā)展,微伏級(jí)的TWA已經(jīng)可以被檢出,并且精度越來越高。本文以T波交替檢測(cè)為中心,基于ARM給出了T波交替檢測(cè)技術(shù)原理性樣機(jī)的硬件及軟件,實(shí)現(xiàn)實(shí)時(shí)監(jiān)護(hù)的目的。 在TWA檢測(cè)研究中,需要對(duì)心電信號(hào)進(jìn)行預(yù)處理,即信號(hào)去噪和特征點(diǎn)檢測(cè)。小波分析以其多分辨率的特性和表征時(shí)頻兩域信號(hào)局部特征的能力成為我們選取的心電信號(hào)自動(dòng)分析手段。文中采用小波變換將原始心電信號(hào)分解為不同頻段的細(xì)節(jié)信號(hào),根據(jù)三種主要噪聲的不同能量分布,采用自適應(yīng)閾值和軟硬閾值折衷處理策略用閾值濾波方法對(duì)原始信號(hào)進(jìn)行去噪處理:同時(shí)基于心電信號(hào)的特征點(diǎn)R峰對(duì)應(yīng)于Mexican-hat小波變換的極值點(diǎn),因此我們使用Mexican-hat小波檢測(cè)R峰,通過附加檢測(cè)方案確保了位置的準(zhǔn)確性,并根據(jù)需要提出了T波矩陣提取方法。 隨后文章介紹了T波交替的產(chǎn)生機(jī)理及研究進(jìn)展,分別從臨床應(yīng)用和檢測(cè)方法上展現(xiàn)了目前TWA的發(fā)展進(jìn)程,并利用了譜分析法、相關(guān)分析法和移動(dòng)平均修正算法分別從時(shí)域和頻域?qū)σ恍颖緮?shù)據(jù)進(jìn)行T波交替檢測(cè)。在檢測(cè)中譜分析法抗噪能力較強(qiáng),但作為一種頻域檢測(cè)方法,無法檢測(cè)非穩(wěn)態(tài)TWA信號(hào),而相關(guān)分析法受呼吸、噪聲影響較大,數(shù)據(jù)要求較高,因此可以在譜分析檢測(cè)為陽性TWA基礎(chǔ)上,再對(duì)信號(hào)進(jìn)行相關(guān)分析,從而克服自身算法缺陷,確定交替幅度和時(shí)間段。最后對(duì)影響檢測(cè)結(jié)果的因素進(jìn)行討論研究,從而降低檢測(cè)誤差。 文章還設(shè)計(jì)了T波交替檢測(cè)技術(shù)原理性樣機(jī)的關(guān)鍵部分電路和軟件框架。硬件部分圍繞ARM核的Samsung S3C44BOX為核心,設(shè)計(jì)了該樣機(jī)的關(guān)鍵電路,包括采集模塊、數(shù)據(jù)處理模塊(外部存儲(chǔ)電路、通信接口電路等)。其中在采集模塊中針對(duì)心電信號(hào)是微弱信號(hào)并且干擾大的特點(diǎn),采用了具有高共模抑制比和高輸入阻抗的分級(jí)放大電路,有效的提取了信號(hào)分量:A/D轉(zhuǎn)換電路保證了信號(hào)量化的高精度。利用USB接口芯片和刪內(nèi)部異步串行通訊實(shí)現(xiàn)系統(tǒng)與外界聯(lián)系。系統(tǒng)軟件中首先介紹了系統(tǒng)的軟件開發(fā)環(huán)境,然后給出了心電信號(hào)分析及處理程序設(shè)計(jì)流程圖及實(shí)現(xiàn),使它們共同完成系統(tǒng)的軟件監(jiān)護(hù)功能。
標(biāo)簽: ARM 檢測(cè)技術(shù)
上傳時(shí)間: 2013-07-27
上傳用戶:familiarsmile
隨著嵌入式技術(shù)和網(wǎng)絡(luò)技術(shù)的發(fā)展和應(yīng)用,充分結(jié)合兩種技術(shù)優(yōu)勢(shì)的遠(yuǎn)程數(shù)據(jù)采集終端正在不斷地被研究和開發(fā)。本文即是此背景下,綜合以往遠(yuǎn)程數(shù)據(jù)采集終端的優(yōu)缺點(diǎn),對(duì)基于ARM的遠(yuǎn)程數(shù)據(jù)采集智能終端予以研究和實(shí)現(xiàn),該終端具備GPRS和INTERNET兩種接入方式。可通過RS232或A/D模塊采集用戶終端設(shè)備數(shù)據(jù)信息;在GPRS接入方式下使用GPRS無線數(shù)據(jù)終端通過GPRS網(wǎng)絡(luò)接入互聯(lián)網(wǎng),在INTERNET接入方式下則直接接入互聯(lián)網(wǎng);接入后則可向遠(yuǎn)程控制中心上傳用戶終端據(jù)信息。本文研制的遠(yuǎn)程數(shù)據(jù)采集終端可廣泛地應(yīng)用包括環(huán)保數(shù)據(jù)采集在內(nèi)的多種數(shù)據(jù)遠(yuǎn)程采集場(chǎng)合。 本文主要做了以下研究工作: 1、對(duì)硬件資源進(jìn)行了外圍擴(kuò)展,對(duì)S3C44BOX處理器芯片的外圍硬件進(jìn)行了擴(kuò)展設(shè)計(jì),使之具備了滿足使用需求的最小系統(tǒng)硬件資源。包括外圍存儲(chǔ)、LCD、鍵盤、以太網(wǎng)卡和GPRSi匿信模塊等。 2、運(yùn)用多任務(wù)操作系統(tǒng)可以有效的組織并行任務(wù)的處理,本文對(duì)μc/os-Ⅱ操作系統(tǒng)進(jìn)行了移植,對(duì)原有μc/os-Ⅱ操作系統(tǒng)的搶占式調(diào)度機(jī)制進(jìn)行了改造,使之成為整體搶占,局部輪詢的調(diào)度機(jī)制;使之較好地滿足了實(shí)際要求。 3、無論采用GPRS方式還是INTERNET方式,設(shè)備終端與INTERNET實(shí)現(xiàn)通信都必須具備相應(yīng)的協(xié)議。本文實(shí)現(xiàn)了TCP/IP有關(guān)網(wǎng)絡(luò)協(xié)議棧的建立,對(duì)協(xié)議進(jìn)行了簡(jiǎn)化設(shè)計(jì),實(shí)現(xiàn)了兩種方式的接入,滿足了嵌入式終端的要求。 4、為了使終端具備較好的人機(jī)交互能力,構(gòu)建了嵌入式圖形界面,實(shí)現(xiàn)了LCD圖形顯示和鍵盤輸入控制的交互功能。 通過以上工作,建立了一個(gè)功能齊全,實(shí)時(shí)可靠,基于嵌入式系統(tǒng)的遠(yuǎn)程數(shù)據(jù)采集終端。
標(biāo)簽: ARM 遠(yuǎn)程數(shù)據(jù) 采集終端
上傳時(shí)間: 2013-07-17
上傳用戶:ljmwh2000
隨著科學(xué)技術(shù)水平的不斷提高,在科研和生產(chǎn)過程中為了更加真實(shí)的反映被測(cè)對(duì)象的性質(zhì),對(duì)測(cè)試系統(tǒng)的性能要求越來越高。傳統(tǒng)的測(cè)試裝置,由于傳輸速度低或安裝不便等問題已不能滿足科研和生產(chǎn)的實(shí)際需要。USB技術(shù)的出現(xiàn)很好的解決了上述問題。USB總線具有支持即插即用、易于擴(kuò)展、傳輸速率高(USB2.0協(xié)議下為480Mbps)等優(yōu)點(diǎn),已逐漸得到廣泛的應(yīng)用。 本課題研究并設(shè)計(jì)了一套基于USB2.0的數(shù)據(jù)采集系統(tǒng)。論文首先詳細(xì)介紹了USB總線協(xié)議,然后從系統(tǒng)的總體結(jié)構(gòu)、硬件電路、軟件程序以及系統(tǒng)性能檢測(cè)等幾個(gè)方面,詳細(xì)闡述了系統(tǒng)的設(shè)計(jì)思想和實(shí)現(xiàn)方案。系統(tǒng)采用雙12位A/D轉(zhuǎn)換器,提供兩條模擬信號(hào)通道,可以同時(shí)采集雙路信號(hào),最高的采樣率為200KHz。USB接口芯片采用Cypress公司的CY7C68013。論文詳細(xì)介紹了其在SlaveFIFO接口模式下的電路設(shè)計(jì)和程序設(shè)計(jì)。系統(tǒng)應(yīng)用FPGA芯片作系統(tǒng)的核心控制,控制系統(tǒng)的數(shù)據(jù)采集和與USB接口芯片的數(shù)據(jù)交換,并產(chǎn)生其中的邏輯控制信號(hào)和時(shí)序信號(hào)。同時(shí)應(yīng)用FPGA芯片作系統(tǒng)的核心控制可提高了系統(tǒng)穩(wěn)定性、減小設(shè)備的體積。系統(tǒng)的軟件設(shè)計(jì),主要包括FPGA芯片中的邏輯、時(shí)序控制程序、8051固件程序、客戶應(yīng)用程序及其驅(qū)動(dòng)程序。客戶端選擇了微軟的Visual Studio6.0 C++作開發(fā)平臺(tái),雖然增加了復(fù)雜程度,但是軟件執(zhí)行效率及重用性均得到提高。 最后,應(yīng)用基于USB2.0的數(shù)據(jù)采集系統(tǒng)測(cè)試標(biāo)準(zhǔn)信號(hào)及電木的導(dǎo)熱系數(shù),以驗(yàn)證測(cè)試系統(tǒng)的可靠信與準(zhǔn)確性。
標(biāo)簽: FPGA USB 接口 數(shù)據(jù)采集
上傳時(shí)間: 2013-04-24
上傳用戶:鳳臨西北
人體血液成份的無創(chuàng)檢測(cè)是生物醫(yī)學(xué)領(lǐng)域尚未攻克的前沿課題之一,動(dòng)態(tài)光譜法在理論上克服了其它檢測(cè)方法難以逾越的障礙——個(gè)體差異和測(cè)量條件對(duì)檢測(cè)結(jié)果的影響。實(shí)現(xiàn)動(dòng)態(tài)光譜檢測(cè),其關(guān)鍵在于采集多波長(zhǎng)的光電容積脈搏波信號(hào),并對(duì)其進(jìn)行處理。針對(duì)動(dòng)態(tài)光譜檢測(cè)中信號(hào)微弱、信噪比低、處理數(shù)據(jù)量大的特點(diǎn),本文設(shè)計(jì)了基于FPGA和面陣CCD攝像頭的動(dòng)態(tài)光譜數(shù)據(jù)采集與預(yù)處理系統(tǒng),提高檢測(cè)精度,采集出滿足動(dòng)態(tài)光譜信號(hào)提取要求的光電脈搏波;并對(duì)動(dòng)態(tài)光譜頻域提取法的核心算法FFT的FPGA實(shí)現(xiàn)進(jìn)行研究。 課題提出用高靈敏度的面陣CCD攝像頭替代常規(guī)光柵光譜儀中的光電接收器,實(shí)現(xiàn)對(duì)多波長(zhǎng)的光電容積脈搏波的檢測(cè)。結(jié)合面陣CCD的二維圖像特點(diǎn),采用信號(hào)累加法去除噪聲,提高信號(hào)的信噪比。 創(chuàng)新性的提出一種不同于以往的信號(hào)累加方法——將處于同一行的視頻信號(hào)在采樣過程中直接累加,然后再進(jìn)行傳輸和存儲(chǔ)。不同于幀累加和異行累加,這種同行累加方式不但大大的提高了信號(hào)的信噪比,同時(shí)減小了數(shù)據(jù)的傳輸速度和傳輸量,降低了對(duì)存儲(chǔ)器容量的要求,改善了動(dòng)態(tài)光譜信號(hào)檢測(cè)系統(tǒng)的性能。 針對(duì)面陣CCD攝像頭輸出的復(fù)合視頻信號(hào)的特點(diǎn),設(shè)計(jì)視頻信號(hào)解調(diào)電路,得到高速、高精度的數(shù)字視頻信號(hào)和準(zhǔn)確的視頻同步信號(hào),用于后續(xù)的視頻信號(hào)采集與處理。 根據(jù)動(dòng)態(tài)光譜信號(hào)檢測(cè)和視頻信號(hào)采集的要求,選擇可編程邏輯器件FPGA作為硬件平臺(tái),設(shè)計(jì)并實(shí)現(xiàn)了基于FPGA和面陣CCD攝像頭的光電脈搏波采集與預(yù)處理系統(tǒng)。該系統(tǒng)實(shí)現(xiàn)了視頻信號(hào)的精確定位,通過光譜信號(hào)的高速同行累加,實(shí)現(xiàn)了光電脈搏波信號(hào)的高精度檢測(cè)。系統(tǒng)采用基于FPGA的Nios II嵌入式處理器系統(tǒng),通過對(duì)其應(yīng)用程序的開發(fā),可靠的實(shí)現(xiàn)了數(shù)據(jù)的采集、傳輸和存儲(chǔ),提高了系統(tǒng)的集成度,降低了開發(fā)成本。 為實(shí)現(xiàn)動(dòng)態(tài)光譜信號(hào)的頻域提取,研究了基于FPGA的FFT實(shí)現(xiàn)方案,對(duì)各關(guān)鍵模塊進(jìn)行設(shè)計(jì),為動(dòng)態(tài)光譜信號(hào)的進(jìn)一步處理打下良好的基礎(chǔ)。 最后,通過實(shí)驗(yàn)證明了系統(tǒng)數(shù)據(jù)采集的正確性和信號(hào)預(yù)處理的可行性,得到了符合動(dòng)態(tài)光譜信號(hào)提取要求的脈搏波信號(hào)。
標(biāo)簽: 動(dòng)態(tài) 光譜數(shù)據(jù)采集 預(yù)處理
上傳時(shí)間: 2013-04-24
上傳用戶:cknck
本文介紹了一種新型的電能量采集終端。以流行的AT91RM9200 為核心,操作系統(tǒng)采用ARM-LINUX2.4.20 系統(tǒng),多進(jìn)程設(shè)計(jì),各進(jìn)程模塊并發(fā)運(yùn)行,可極大的提高系統(tǒng)效率。相對(duì)于其他同類
上傳時(shí)間: 2013-04-24
上傳用戶:sy_jiadeyi
·論文摘要:利用聲卡DSP技術(shù)和LabVIEW多線程技術(shù),提出了一種基于聲卡的數(shù)據(jù)采集與分析的廉價(jià)設(shè)計(jì)方案,具有實(shí)現(xiàn)簡(jiǎn)單、界面友好、性能穩(wěn)定可靠等優(yōu)點(diǎn)。在LabVIEW環(huán)境中實(shí)現(xiàn)了音頻信號(hào)的采集分析及數(shù)據(jù)存盤重載。PC上配置多塊聲卡即可構(gòu)成實(shí)時(shí)、高信噪比的多通道數(shù)據(jù)采集系統(tǒng)。可以推廣到語音識(shí)別、環(huán)境噪聲監(jiān)測(cè)和實(shí)驗(yàn)室測(cè)量等多種領(lǐng)域,應(yīng)用前景廣闊。
上傳時(shí)間: 2013-06-18
上傳用戶:changeboy
摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類號(hào): TN 79 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問 題。 1) 時(shí)鐘的快速電平切換將給電路帶來的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時(shí)來達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開頭有一個(gè)用于同步檢測(cè)的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測(cè)出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過采樣 點(diǎn)依次相差90°相位。通過存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問題, 降低了系統(tǒng)設(shè)計(jì)的難度。
標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用
上傳時(shí)間: 2013-12-17
上傳用戶:xg262122
離散傅里葉變換,(DFT)Direct Fouriet Transformer(PPT課件) 一、序列分類對(duì)一個(gè)序列長(zhǎng)度未加以任何限制,則一個(gè)序列可分為: 無限長(zhǎng)序列:n=-∞~∞或n=0~∞或n=-∞~ 0 有限長(zhǎng)序列:0≤n≤N-1有限長(zhǎng)序列在數(shù)字信號(hào)處理是很重要的一種序列。由于計(jì)算機(jī)容量的限制,只能對(duì)過程進(jìn)行逐段分析。二、DFT引入由于有限長(zhǎng)序列,引入DFT(離散付里葉變換)。DFT它是反映了“有限長(zhǎng)”這一特點(diǎn)的一種有用工具。DFT變換除了作為有限長(zhǎng)序列的一種付里葉表示,在理論上重要之外,而且由于存在著計(jì)算機(jī)DFT的有效快速算法--FFT,因而使離散付里葉變換(DFT)得以實(shí)現(xiàn),它使DFT在各種數(shù)字信號(hào)處理的算法中起著核心的作用。三、本章主要討論離散付里葉變換的推導(dǎo)離散付里葉變換的有關(guān)性質(zhì)離散付里葉變換逼近連續(xù)時(shí)間信號(hào)的問題第二節(jié)付里葉變換的幾種形式傅 里 葉 變 換 : 建 立 以 時(shí) 間 t 為 自 變 量 的 “ 信 號(hào) ” 與 以 頻 率 f為 自 變 量 的 “ 頻 率 函 數(shù) ”(頻譜) 之 間 的 某 種 變 換 關(guān) 系 . 所 以 “ 時(shí) 間 ” 或 “ 頻 率 ” 取 連 續(xù) 還 是 離 散 值 , 就 形 成 各 種 不 同 形 式 的 傅 里 葉 變 換 對(duì) 。, 在 深 入 討 論 離 散 傅 里 葉 變 換 D F T 之 前 , 先 概 述 四種 不 同 形式 的 傅 里 葉 變 換 對(duì) . 一、四種不同傅里葉變換對(duì)傅 里 葉 級(jí) 數(shù)(FS):連 續(xù) 時(shí) 間 , 離 散 頻 率 的 傅 里 葉 變 換 。連 續(xù) 傅 里 葉 變 換(FT):連 續(xù) 時(shí) 間 , 連 續(xù) 頻 率 的 傅 里 葉 變 換 。序 列 的 傅 里 葉 變 換(DTFT):離 散 時(shí) 間 , 連 續(xù) 頻 率 的 傅 里 葉 變 換.離 散 傅 里 葉 變 換(DFT):離 散 時(shí) 間 , 離 散 頻 率 的 傅 里 葉 變 換1.傅 里 葉 級(jí) 數(shù)(FS)周期連續(xù)時(shí)間信號(hào) 非周期離散頻譜密度函數(shù)。 周期為Tp的周期性連續(xù)時(shí)間函數(shù) x(t) 可展成傅里葉級(jí)數(shù)X(jkΩ0) ,是離散非周期性頻譜 , 表 示為:例子通過以下 變 換 對(duì) 可 以 看 出 時(shí) 域 的 連 續(xù) 函 數(shù) 造 成 頻 域 是 非 周 期 的 頻 譜 函 數(shù) , 而 頻 域 的 離 散 頻 譜 就 與 時(shí) 域 的 周 期 時(shí) 間 函 數(shù) 對(duì) 應(yīng) . (頻域采樣,時(shí)域周期延 拓)2.連 續(xù) 傅 里 葉 變 換(FT)非周期連續(xù)時(shí)間信號(hào)通過連續(xù)付里葉變換(FT)得到非周期連續(xù)頻譜密度函數(shù)。
標(biāo)簽: Fouriet Direct DFT Tr
上傳時(shí)間: 2013-11-19
上傳用戶:fujiura
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1