能源和環境的雙重壓力、電子技術與控制理論的飛速發展使得柴油機控制能夠采用電子控制技術,并成為柴油機控制的研究熱點。本文針對我國內燃機車牽引用的柴油機(12V240ZJ6E),主要研究其電控單體泵的電子控制技術。實現了電控單體泵在實驗臺上的電子控制,為最終降低內燃機車柴油機在輕載工況下的燃油消耗率并改善其排放打下基礎。在以下三方面展開研究工作: 首先,根據柴油機的燃油噴射原理,深入研究高壓燃油在泵-管-嘴系統中的傳遞規律,分析燃油噴射系統的各種電子控制方式,結合我國內燃機車柴油機改造的現狀并參考國內外應用實例,確定采用“電控單體泵系統”方案。針對性地分析電控單體泵的特性,總結出電控單體泵的控制規律。 其次,設計電控單體泵的高速大流量電磁閥驅動模塊,其性能直接影響電磁閥的響應特性。通過計算和試驗對比的方法獲得不同驅動電壓、不同續流回路情況時的動態響應,找出最優電路參數和控制參數。用于多缸柴油機的驅動模塊可以修正各單體泵噴油特性的差異。 第三,設計凸輪軸轉速的測量模塊。采集安裝于凸輪軸上的測速齒輪的脈沖信號,計算凸輪軸的瞬時轉速和相位,并對瞬時轉速進行預測,為查找脈譜表以確定噴油定時和噴油量奠定基礎。凸輪軸轉速的預測方法為“相鄰區間+自適應參數修正”。 最后,設計控制電路,以數字信號處理器為主控芯片。在數字信號處理器中完成柴油機的轉速測量和電磁閥驅動脈沖生成。由于內燃機車上的電磁環境比較惡劣,采用了抗干擾措施。 通過上述工作,掌握了電控單體泵系統的基本特性,完成了電子控制單元主要電路的設計,并實現凸輪軸的測速和電磁閥的控制。電子控制單元在電控單體泵試驗臺上進行了試驗。結果表明,測速準確、電磁閥驅動及其控制方式合理,為后續工作打下良好的基礎。
上傳時間: 2013-04-24
上傳用戶:xz85592677
永磁無刷直流電動機是一種機械、電氣、電子一體化的高技術產品,具有結構簡單、運行可靠、使用壽命長等優點,在現代輕重工業中應用廣泛。現代工業技術和生產需求的快速發展對永磁無刷直流電動機控制系統的性能要求不斷提高,因此研究具有響應速度快、調節能力強、控制精度高的無刷直流電動機控制系統具有十分重要的意義。 本文介紹了永磁無刷直流電動機控制系統的組成和研究方向,介紹了英飛凌XC167Cl高性能16位單片機,進而對永磁無刷直流電動機的類型進行了介紹,同時分析了永磁無刷直流電動機的工作原理,建立了比較完善的數學模型,并詳細闡述了轉矩脈動產生的原因和消除轉矩脈動的一般方法。 本文設計并實現了基于英飛凌XC167Cl高性能16位單片機的轉速和電流雙閉環永磁無刷直流電動機控制系統。系統采用PWM方式實現對電機的控制。轉速和電流雙閉環數字PI器的應用使得控制系統具有良好的動態和靜態性能。單片機和液晶顯示與鍵盤給定模塊之間的串行通信實現了控制系統信息在人機間的傳輸,為系統的調試帶來了靈活性,也為控制系統中參數的實時監控和給定提供了方便。 在本文的最后,就采集到的部分波形,分析了實驗結果,并提出了對本系統的總結和展望。 實驗表明,本文所采用的英飛凌XC167Cl高性能16位單片機具有極高的性能,以其為核心的控制系統具有運行性能良好、調試方便、升級換代容易等特點,為后續的研究工作提供了實驗基礎和借鑒。
上傳時間: 2013-05-25
上傳用戶:fanghao
電子式互感器與傳統電磁式互感器相比,在帶寬、絕緣和成本等方面具有優勢,因而代表了高電壓等級電力系統中電流和電壓測量的一種極具吸引力的發展方向。隨著信息技術的發展和電力市場中競爭機制的形成,電子式互感器成為人們研究的熱點;越來越多的新技術被引入到電子式互感器設計中,以提高其工作可靠性,降低運行總成本,減小對生態環境的壓力。本文圍繞電子式互感器實用化中的關鍵技術而展開理論與實驗研究,具體包括新型傳感器、雙傳感器的數據融合算法、數字接口、組合式電源、低功耗技術和自監測功能的實現等。 目前電子式電流互感器(ECT)大多數采用單傳感器開環結構,對每個環節的精度和可靠性的要求都很高,嚴重制約了ECT整體性能的提高,影響其實用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數字積分器,在此基礎上設計了一種基于LPCT和PCB空心線圈的組合結構的新型電流傳感器。該結構具有并聯的特點,結合了這兩種互感器的優點,采用數據融合算法來處理兩路信號,實現高精度測量和提高系統可靠性,并探索出辨別LPET飽和的新方法。試驗和仿真結果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達到IEC 60044-8標準中關于測量(幅值誤差)、保護(復合誤差)和暫態響應(峰值)的準確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結構和輸出信號等方面與傳統的電壓互感器有很大不同,本文設計了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗研究與計算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結果表明,設計的10kV精密電阻分壓器的準確度滿足IEC 60044-7標準要求,可達0.2級。 電子式互感器的關鍵技術之一是內部的數字化以及其標準化接口,本文以10kV組合型電子式互感器為對象設計了一種實用化的數字系統。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數據融合算法的LPCT和PCB空心線圈的組合結構。本文首先解決了互感器間的同步與傳感器間的內部同步問題,進而依照IEC61850-9-1標準,實現了組合型電子式互感器的100M以太網接口。 電子式電流互感器在高電壓等級的應用研究中,ECT高壓側的電源問題是關鍵技術之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個特制的電流互感器(取電CT),直接從高壓側母線電流中獲取電能。在取電CT和整流橋之間設計一個串聯電感,大大降低了施加在整流橋上的的感應電壓并限制了取電CT的輸出電流,起到了穩定電壓和保護后續電路的作用。激光電源方案以先進的光電轉換器、半導體激光二極管和光纖為基礎,單獨一根上行光纖同時完成供能和控制信號的傳輸,在不影響光供能穩定性的情況下,數據通信完成在短暫的供能間隔中。在高電位端控制信號通過在能量變換電路中增加一個比較器電路被提取出來。本文還提出了一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法,解決了取電CT電源的死區問題,延長了激光器的使用壽命。作為綜合應用實例,設計并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術的高壓電子式電流互感器。互感器高壓側的一次轉換器能夠提供兩路傳感器數據通道,并且具有溫度補償和采集通道的自校正功能,在更寬溫度、更大電流范圍內保證了極高的測量精度:互感器低電位端的二次轉換器具有數字和模擬接口,可以接收數據并發送命令來控制一次轉換器,包括同步和校正命令在內的數據信號可以通過同一根供能光纖傳送到一次轉換器。該互感器具有在線監測功能,這種預防性維護和自檢測功能夠提示維護或提出警告,提高了可靠性。系統測試表明:具有低功耗光纖發射驅動電路的一次轉換器平均功耗在40mw以下:上行光纖中通信波特率可以達到200kb/s,下行光纖中更是高達2Mb/s;系統準確度同時滿足IEC6044-8標準對0.2S級測量和5TPE級保護電子式互感器的要求。
上傳時間: 2013-06-09
上傳用戶:handless
超級電容器是一種具有高能量密度的新型儲能元器件,它可提供超大功率并具有超長的壽命,是一種兼備電容和電池特性的新型元件,在混合動力電動車、脈沖電源系統和應急電源等領域具有廣泛的應用前景。對于大功率儲能系統來說,為了滿足容量和電壓等級的需要,一般是由多個超級電容器串聯和并聯的組合方式構成。然而超級電容器在串并聯使用時,單體電容器參數的分散性是制約其壽命和可靠性的主要因素。因此,為了提高儲能效率,對超級電容器組合進行電壓均衡管理具有十分重要的意義。 本文針對超級電容器串聯使用時充電電壓的均衡問題,對超級電容器組充放電均衡技術進行了研究,通過對現有均衡技術的分析和討論,確定采用單電容均壓方案,并利用DSP控制技術,設計了一個基于DSP控制的超級電容組電壓均衡系統,解決超級電容器串聯電壓均衡問題。該系統主要由參數采集、PWM信號輸出、開關網絡控制等部分組成。系統以DSP為控制核心,采用了一只電解電容器作為中間電容傳遞能量,通過實時電壓、電流及溫度監測將采集到的信號,經A/D轉換器后,送入DSP處理,系統根據得到的電壓、電流信息判斷電容的充放電狀態,控制PWM信號的輸出,進而驅動開關網絡的切換,使能量在單體電容器之間快速傳遞,從而實現均壓控制。最后,對該系統進行了仿真和實驗研究,通過對上述數據的分析比較可以看出,采用此種方案進行均衡后,超級電容組單體的電壓在充電過程中達到了較好的一致性。 本文設計的超級電容組電壓均衡系統用于串聯超級電容組的充放電均衡控制,既可實現靜態均衡也可實現動態均衡。與其他均衡方案相比,該系統具有電壓均衡速度快,均衡效果好的優點。
上傳時間: 2013-04-24
上傳用戶:s363994250
本程序為采用mega8 和18b20的溫度采集程序 選用mega8內部8M RC震蕩,18b20 數據線接pd6,數據線和vcc間接一4.7k上拉電阻
上傳時間: 2013-07-22
上傳用戶:fanghao
基于ARM的數字圖像采集系統的碩士論文 ARM-PowerPC-ColdFire-MIPS
上傳時間: 2013-07-24
上傳用戶:lishuoshi1996
在電力系統容量日益擴大和電網電壓運行等級不斷提高的潮流下,傳統電磁式互感器在運行中暴露出越來越多的弊端,難以滿足電力系統向自動化、標準化和數字化的發展需求,電子式互感器取代傳統電磁式互感器已經成為一種必然的趨勢,并成為人們研究的熱點。本文圍繞電子式電流互感器高壓側數據采集系統進行了研究與設計。 Rogowski線圈是電流傳感元件,本文總紿了Rogowski線圈的基本原理,其中包括線圈的等效電路和相量圖,線圈的電磁參數計算。在理論研究的基礎上,結合實際設計一款高精度PCBRogowski線圈。電容分壓器是電壓傳感元件,文章中介紹了傳感器的原理、傳感器的模型結構,針對其自身結構缺陷和工作環境的電磁干擾,提出具有針對性的電磁兼容設計方法。 積分器的性能一直是影響Rogowski線圈電流傳感器的精度和穩定性的重要因素之一。模擬積分器具有結構簡單、響應速度快、輸入動態范圍大等優點;數字積分器具有性能穩定,精度高等優點。后者的優勢使其成為近年來Rogowski線圈電流互感器實用化研究的一個熱點問題。本文設計了一套數字積分器設計的方法,其中包括了積分算法的選擇,積分輸入采樣率和分辨率的確定,數字積分器的通用結構,積分初值的選擇方法等。 為了保證系統的運行穩定,文章中的系統只采用激光供電模式,降低數據采集系統的功耗就成了系統設計的一個重要環節。文章中介紹了一些實用的低功耗處理方法,分析了激光器的特性,光電池的特性和光電轉換器件的特性,并根據這些器件的特性,改進了數據發送激光器的驅動電路,大幅度降低了系統的功耗,保證了系統在較低供電功率條件下的正常運行。 論文最后對全文工作進行總結,提出進一步需要解決的問題。
上傳時間: 2013-07-10
上傳用戶:zsjzc
隨著當今科學技術的迅猛發展,數字圖像處理技術正在各個行業得到廣泛的應用,而FPGA技術的不斷成熟改變了通常采用并行計算機或數字信號處理器(DSP)、專用集成電路(ASIC)等作為嵌入式處理器的慣例。可編程邏輯器件(FPGA)憑借其較低的開發成本、較高的并行處理速度、較大的靈活性及其較短的開發周期等特點,在圖像處理系統中有獨特的優勢。 本文提出了一種基于FPGA的圖像采集處理系統解決方案,并選用低成本高性能的Altera公司的CycloneIII系列FPGA EP3C40F324為核心,設計開發了圖像采集處理的軟硬件綜合系統。文章闡述了如何在FPGA中嵌入NiosII軟核處理器并完成圖像采集處理系統功能的設計方案。硬件電路上,系統設計了三塊電路板:FPGA核心處理板、圖像采集卡、圖像顯示卡,其中通過I2C總線對采集卡的工作模式進行配置,在采集模塊控制下,將采集到的圖像數據存儲到SDRAM;根據VGA顯示原理及其時序關系,設計了VGA顯示輸出控制模塊,合成了VGA工作的控制信號,又根據VGA顯示器的工業標準,合成VGA接口的水平和幀同步信號。邏輯硬件上,應用SOPCBuilder工具生成了FPGA內部的邏輯硬件功能模塊,定制了NiosII IP core、CMOS圖像采集模塊、VGA Controller及其I2C總線接口,系統各模塊間通過Avalon總線連接起來。軟件部分,在NiosII內核處理器上實現了彩色圖像顏色空間轉換、二值化、形態學腐蝕處理及其目標定位等算法。實驗結果證明了本文提出的方案及算法的正確性,可行性。
上傳時間: 2013-08-05
上傳用戶:woshiyaosi
電機是現代工業生產和日常生活最主要的原動力和驅動裝置。電機一旦發生故障,會造成不同程度的經濟損失和社會影響。因此研究不同場合、不同運行狀態下電機故障診斷理論和相關技術具有很高的實用價值。 電機出現故障時,故障信號中往往含有大量的時變、短時突發性質的成分。因此可以通過檢測、分析故障信號,獲得電機的故障信息。傳統的信號分析方法,如傅立葉變換,是一種純頻域分析,缺乏空間局部性,不能滿足故障信號分析的要求。而小波分析和小波包分析法具有良好的時頻局部性,能夠將信號在任意頻段進行劃分,從而使在不同頻段的各種故障特征信號更加容易被識別和提取。基于小波包分析處理非平穩信號的優越性,本文選用小波包分析對電機故障信號進行分析檢測。 本文在研究了異步電機常見故障類型和診斷方法的基礎上,詳細分析了電機滾動軸承異常、轉子斷條、氣隙偏心等故障原因,采用基于信號分析法中的振動診斷法和定子電流檢測法,對電機滾動軸承故障、轉子斷條故障進行診斷。對于存在已知軸承故障的電機,在故障狀態下采集到振動信號,利用峭度值計算和小波包分析相結合的方法,選用db3作為小波基,進行小波包分析,對包含有故障特征頻率信息的信號進行重構,獲得軸承故障特征頻率,根據故障特征頻率的數值和能量,確定出軸承故障的類型。應用小波包分析和FFT相結合的方法,選用Coif5為小波包基,檢測轉子斷條故障特征頻率。在此基礎上,采集故障電機的振動信號和電流信號,并分別應用上述方法進行了仿真模擬實驗,結果表明這些方法是準確可行的。 論文以DSP為核心,完成了電機故障診斷系統的硬件電路的設計,包括信號檢測電路、調理電路,A/D轉換電路等,并給出了主要的軟件流程圖。
上傳時間: 2013-04-24
上傳用戶:kristycreasy
本文介紹了一種新型金融終端(POS),其座機與手持機之間采用射頻通信方式,并在射頻通信中采用跳頻和防碰撞設計,使得座機和手持機之間的通信速率高、穩定可靠。本設計中的金融終端還具有非接觸式IC卡數據采集功能,這在設備功能上是一個巨大的創新。手持機可移動操作,方便了客戶操作,在很大程度上可以幫助商家提高服務質量,非常適用于餐廳、酒店以及娛樂場所等。 本設計中的金融終端包括手持機和座機,手持機的主要功能是采集金融信息,采集的對象可以是磁條卡,接觸式IC卡或非接觸IC卡,采集到卡的賬號和密碼等信息后以射頻的方式發送至座機,同時接收座機發送來的數據;座機收到手持機發送的金融信息后,再通過有線方式(電話網或以太網)發送給銀行主機,交易數據處理后,銀行主機將數據以有線的方式發回給座機,座機再通過無線方式發送給手持機,并打印交易憑證。文中詳細介紹了手持機和座機各功能模塊的硬件設計和功能實現方式,包括各主要芯片選型依據、所選芯片的特性、設計原理以及各相關模塊在POS中的功能。 POS的軟件設計包括硬件驅動程序(底層程序)設計和應用程序(上層應用程序)設計,底層程序跟所使用的硬件相關,是CPU控制各外圍器件實現各模塊硬件功能的程序,通常驅動程序會封裝起來,有入口參數,供上層應用調用;上層應用程序足根據產品要實現的服務功能而編寫的相關程序,上層應用程序通常需要調用底層程序。文中驅動程序主要介紹了鍵盤驅動,顯示驅動,并重點介紹了射頻通信驅動程序的設計,包括CPU如何控制射頻收發芯片、為抗干擾而采取的跳頻設計和設備問的防碰撞設計;應用程序中主要介紹了磁條卡和IC卡的處理程序。 由于本設計中的金融終端座機與手持機之間的通信速率較高,通信穩定可靠,同時還新增了非接觸卡的數據采集功能,使該設備有較大的使用范圍,從而有廣闊的市場前景。
上傳時間: 2013-06-27
上傳用戶:1234567890qqq