亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

您現在的位置是:蟲蟲下載站 > 資源下載 > 人工智能/神經網絡 > Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form

Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form

資 源 簡 介

Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form a strong classifier. Adaptive Boosting (Adaboost) implements this idea as a greedy search for a linear combination of classifiers by overweighting the examples that are misclassified by each classifier. icsiboost implements Adaboost over stumps (one-level decision trees) on discrete and continuous attributes (words and real values). See http://en.wikipedia.org/wiki/AdaBoost and the papers by Y. Freund and R. Schapire for more details [1]. This approach is one of most efficient and simple to combine continuous and nominal values. Our implementation is aimed at allowing training from millions of examples by hundreds of features in a reasonable time/memory.

相 關 資 源

主站蜘蛛池模板: 筠连县| 宝鸡市| 丰都县| 长泰县| 晋江市| 成安县| 湖北省| 虎林市| 巴青县| 若尔盖县| 体育| 马龙县| 革吉县| 鄂托克旗| 虹口区| 贵阳市| 松江区| 龙州县| 榕江县| 资溪县| 景洪市| 隆安县| 西贡区| 沂水县| 双鸭山市| 平湖市| 乌恰县| 乌鲁木齐市| 吉隆县| 虞城县| 米易县| 内乡县| 南京市| 观塘区| 庄河市| 时尚| 乌拉特中旗| 长兴县| 宜兴市| 新沂市| 博爱县|