This book provides the essential design techniques for radio systems that
operate at frequencies of 3 MHz to 100 GHz and which will be employed in
the telecommunication service. We may also call these wireless systems,
wireless being synonymous with radio, Telecommunications is a vibrant indus-
try, particularly on the ‘‘radio side of the house.’’ The major supporter of this
upsurge in radio has been the IEEE and its 802 committees. We now devote
? . an entire chapter to wireless LANs WLANs detailed in IEEE 802.11. We
also now have subsections on IEEE 802.15, 802.16, 802.20 and the wireless
? . ? metropolitan area network WMAN . WiFi, WiMax,, and uwb ultra wide-
. band are described where these comparatively new radio specialties are
demonstrating spectacular growth.
Ultra-wideband (uwb) technology enables high data-rate short-range communica-
tion, in excess of hundredmegabit-per-secondsand up to multi-gigabit-per-seconds,
over a wide spectrum of frequencies, while keeping power consumption at low lev-
els. This low power operation results in a less-interfering co-existence with other
existed communication technologies (e.g., UNII bands).
In addition to carrying a huge amount of data over a distance of up to 230 feet
at very low power (less than 0.5mW), the uwb signal has the ability to penetrate
through the doors and other obstacles that tend to reflect signals at more limited
bandwidths and higher power densities.
Recent advances in wireless communication technologies have had a transforma-
tive impact on society and have directly contributed to several economic and social
aspects of daily life. Increasingly, the untethered exchange of information between
devices is becoming a prime requirement for further progress, which is placing an
ever greater demand on wireless bandwidth. The ultra wideband (uwb) system
marks a major milestone in this progress. Since 2002, when the FCC allowed the
unlicensed use of low-power, uwb radio signals in the 3.1–10.6GHz frequency
band, there has been significant synergistic advance in this technology at the cir-
cuits, architectural and communication systems levels. This technology allows for
devices to communicate wirelessly, while coexisting with other users by ensuring
that its power density is sufficiently low so that it is perceived as noise to other
users.
In the two years since this book was first published, ultra wideband (uwb) has
advanced and consolidated as a technology, and many more people are aware of the
possibilities for this exciting technology. We too have expanded and consolidated
materials in this second edition in the hope that ‘Ultra Wideband: Signals and Systems
in Communication Engineering’ will continue to prove a useful tool for many students
and engineers to come to an understanding of the basic technologies for uwb.
In this book we focus on the basic signal processing that underlies current and
future ultra wideband systems. By looking at signal processing in this way we
hope this text will be useful even as uwb applications mature and change or
regulations regarding ultra wideband systems are modified. The current uwb
field is extremely dynamic, with new techniques and ideas being presented at every
communications and signal-processing conference. The basic signal-processing
techniques presented in this text though will not change for some time to come.
Thus, we have taken a somewhat theoretical approach, which we believe is longer
lasting and more useful to the reader in the long term than an up-to-the-minute
summary that is out of date as soon as it is published.