The TAS3204 is a highly-integrated audio system-on-chip (SOC) consisting of a fully-programmable, 48-bit digital audio processor, a 3:1 stereo analog input MUX, four ADCs, four DACs, and other analog functionality. The TAS3204 is programmable with the graphical PurePath Studio? suite of DSP code development software. PurePath Studio is a highly intuitive, drag-and-drop environment that minimizes software development effort while allowing the end user to utilize the power and flexibility of the TAS3204’s digital audio processing core.
TAS3204 processing capability includes speaker equalization and crossover, volume/bass/treble control, signal mixing/MUXing/splitting, delay compensation, dynamic range compression, and many other basic audio functions. Audio functions such as matrix decoding, stereo widening, surround sound virtualization and psychoacoustic bass boost are also available with either third-party or TI royalty-free algorithms.
The TAS3204 contains a custom-designed, fully-programmable 135-MHz, 48-bit digital audio processor. A 76-bit accumulator ensures that the high precision necessary for quality digital audio is maintained during arithmetic operations.
Four differential 102 dB DNR ADCs and four differential 105 dB DNR DACs ensure that high quality audio is maintained through the whole signal chain as well as increasing robustness against noise sources such as TDMA interference.
The TAS3204 is composed of eight functional blocks:
Clocking System
Digital Audio Interface
Analog Audio Interface
Power supply
Clocks, digital PLL
I2C control interface
8051 MCUcontroller
Audio DSP – digital audio processing
特性
Digital Audio Processor
Fully Programmable With the Graphical, Drag-and-Drop PurePath Studio? Software Development Environment
135-MHz Operation
48-Bit Data Path With 76-Bit Accumulator
Hardware Single-Cycle Multiplier (28 × 48)
Lithium–sulfur (Li–S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li–S battery systems. The use
of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li–S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li–S batteries are discussed. Nanostructured metal oxides/ sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium- metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li–S batteries with nanostructured metal oxides/sulfides are also discussed.
3rd Generation Partnership Project;
Technical Specification Group Radio Access Network;
Further advancements for E-UTRA;
LTE-Advanced feasibility studies in RAN WG4
(Release 9)
One traditional view of how wireless networks evolve is of a continuous, inevitable progres-
sion to higher link speeds, combined with greater mobility over wider areas. This standpoint
certainly captures the development from first and second generation cellular systems focused
on voice support, and the early short-range wireless data networks, through to today’s 3G
cellular and mobile broadband systems; there is every confidence that the trend will continue
some way into the future.
Emerging technologies such as WiFi and WiMAX are profoundly changing the
landscape of wireless broadband. As we evolve into future generation wireless
networks, a primary challenge is the support of high data rate, integrated multi-
media type traffic over a unified platform. Due to its inherent advantages in
high-speed communication, orthogonal frequency division multiplexing (OFDM)
has become the modem of choice for a number of high profile wireless systems
(e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
The idea of the book was born during the time when the second generation cellular system was looming on the horizon.At that time ,the world was divided into three distinct camps as far as looking for a standard: Europe North America and Japan.
Today’s wireless services have come a long way since the roll out of the
conventional voice-centric cellular systems. The demand for wireless access
in voice and high rate data multi-media applications has been increasing.
New generation wireless communication systems are aimed at accommodating
this demand through better resource management and improved transmission
technologies.
Many times I have been asked to explain “ briefl y ” how SDH, SONET, and the
OTN “ exactly ” work. The questions came mainly from new colleagues, stu-
dents, and users of these technologies, personally or via the usenet newsgroup
comp.dcom.sdh - sonet. I could have referred them to the standards documents,
but to provide a more consistent and clear answer I decided to write this
pocket guide. The objective of this book is that it can be used both as an
introduction as well as a reference guide to these technologies and their spe-
cifi c standards documents.
It is commonly accepted today that optical fiber communications have revolutionized
telecommunications. Indeed, dramatic changes have been induced in the way we interact
with our relatives, friends, and colleagues: we retrieve information, we entertain and
educate ourselves, we buy and sell, we organize our activities, and so on, in a long list
of activities. Optical fiber systems initially allowed for a significant curb in the cost of
transmission and later on they sparked the process of a major rethinking regarding some,
generation-old, telecommunication concepts like the (OSI)-layer definition, the lack of
cross-layer dependency, the oversegmentation and overfragmentation of telecommunica-
tions networks, and so on.