The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. This document describes the transform and
quantization processes defined, or implied, by the standard.
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1,2] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. This document describes the methods of predicting
intra-coded macroblocks in an H.264 CODEC.
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. The standard specifies two types of entropy coding:
Context-based Adaptive Binary Arithmetic Coding (CABAC) and Variable-Length Coding (VLC).
This document provides a short introduction to CABAC. Familiarity with the concept of Arithmetic
Coding is assumed.
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. This document introduces the concepts of
Switching P and I slices, part of the Extended Profile of H.264.
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. The standard specifies two types of entropy coding:
Context-based Adaptive Binary Arithmetic Coding (CABAC) and Variable-Length Coding (VLC).
The Variable-Length Coding scheme, part of the Baseline Profile of H.264, is described in this
document.
Standard-Library Exception Safety
Bjarne Stroustrup
Texas A&M University
(and AT&T Labs – Research)
http://www.research.att.com/~bs
Introduction to the C++ exception handling mechanisms and “resource acquisition is initialization” for people with little experience with exceptions
Using the UnderC Tokenizer Class
It s often necessary to parse complex text files, where standard i/o
is too clumsy. C programmers fall back on strtok(), but this can be
tricky to use properly. Besides, you are still responsible for keeping
strtok() fed with new input, and I don t like the schlepp.
Tokenizer is a text-parsing input stream, modelled after the (undocumented)
VCL TParser class, and based on the UnderC tokenizing preprocessor front-end.
UC Library Extensions
UnderC comes with a pocket implementation of the standard C++ libraries, which is a reasonably faithful subset. This documentation describes those UnderC functions and classes which are not part of the C++ standard.
UC Library
Builtin functions:
Most of these are standard C functions, but there are a few unique to the UnderC system which give you runtime access to the compiler. You may evaluate expressions, execute commands, compile code, etc.
* Expands the text in expr using the UnderC preprocessor, putting the result
into buff.
void uc_macro_subst(const char* expr, char* buff, int buffsize)
* Executes a UC #-command, like #l or #help.
uc_cmd() expects the name of the command, _without_ the hash,
e.g. uc_cmd("l fred.cpp") or uc_cmd("help").
void uc_cmd(const char* cmd)
* Evaluates any C++ expression or statement will return non-zero if
unsuccessful.