亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

rows

  • Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs

    Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs and an initial network % [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) trains the % network with backpropagation. % % The activation functions must be either linear or tanh. The network % architecture is defined by the matrix NetDef consisting of two % rows. The first row specifies the hidden layer while the second % specifies the output layer. %

    標簽: back-propagation corresponding input-output algorithm

    上傳時間: 2016-12-27

    上傳用戶:exxxds

  • % Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is p

    % Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.

    標簽: Levenberg-Marquardt desired network neural

    上傳時間: 2016-12-27

    上傳用戶:jcljkh

  • Train a two layer neural network with a recursive prediction error % algorithm ("recursive Gauss-Ne

    Train a two layer neural network with a recursive prediction error % algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully % connected) networks can be trained. % % The activation functions can either be linear or tanh. The network % architecture is defined by the matrix NetDef , which has of two % rows. The first row specifies the hidden layer while the second % specifies the output layer.

    標簽: recursive prediction algorithm Gauss-Ne

    上傳時間: 2016-12-27

    上傳用戶:ljt101007

  • The code performs a number (ITERS) of iterations of the Bailey s 6-step FFT alg

    The code performs a number (ITERS) of iterations of the Bailey s 6-step FFT algorithm (following the ideas in the CMU Task parallel suite). 1.- Generates an input signal vector (dgen) with size n=n1xn2 stored in row major order In this code the size of the input signal is NN=NxN (n=NN, n1=n2=N) 2.- Transpose (tpose) A to have it stored in column major order 3.- Perform independent FFTs on the rows (cffts) 4.- Scale each element of the resulting array by a factor of w[n]**(p*q) 5.- Transpose (tpose) to prepair it for the next step 6.- Perform independent FFTs on the rows (cffts) 7.- Transpose the resulting matrix The code requires nested Parallelism.

    標簽: iterations performs Bailey number

    上傳時間: 2014-01-05

    上傳用戶:libenshu01

  • 數組子系統

    #include <stdio.h> #include <stdlib.h> #define SMAX 100 typedef struct SPNode { int i,j,v; }SPNode; struct sparmatrix { int rows,cols,terms; SPNode data [SMAX]; }; sparmatrix CreateSparmatrix() { sparmatrix A; printf("\n\t\t請輸入稀疏矩陣的行數,列數和非零元素個數(用逗號隔開):"); scanf("%d,%d,%d",&A.cols,&A.terms); for(int n=0;n<=A.terms-1;n++) { printf("\n\t\t輸入非零元素值(格式:行號,列號,值):"); scanf("%d,%d,%d",&A.data[n].i,&A.data[n].j,&A.data[n].v); } return A; } void ShowSparmatrix(sparmatrix A) { int k; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { k=0; for(int n=0;n<=A.terms-1;n++) { if((A.data[n].i-1==x)&&(A.data[n].j-1==y)) { printf("%8d",A.data[n].v); k=1; } } if(k==0) printf("%8d",k); } printf("\n\t\t"); } } void sumsparmatrix(sparmatrix A) { SPNode *p; p=(SPNode*)malloc(sizeof(SPNode)); p->v=0; int k; k=0; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { for(int n=0;n<=A.terms;n++) { if((A.data[n].i==x)&&(A.data[n].j==y)&&(x==y)) { p->v=p->v+A.data[n].v; k=1; } } } printf("\n\t\t"); } if(k==1) printf("\n\t\t對角線元素的和::%d\n",p->v); else printf("\n\t\t對角線元素的和為::0"); } int main() { int ch=1,choice; struct sparmatrix A; A.terms=0; while(ch) { printf("\n"); printf("\n\t\t      稀疏矩陣的三元組系統       "); printf("\n\t\t*********************************"); printf("\n\t\t      1------------創建          "); printf("\n\t\t      2------------顯示          "); printf("\n\t\t      3------------求對角線元素和"); printf("\n\t\t      4------------返回          "); printf("\n\t\t*********************************"); printf("\n\t\t請選擇菜單號(0-3):"); scanf("%d",&choice); switch(choice) { case 1: A=CreateSparmatrix(); break; case 2: ShowSparmatrix(A); break; case 3: SumSparmatrix(A); break; default: system("cls"); printf("\n\t\t輸入錯誤!請重新輸入!\n"); break; } if (choice==1||choice==2||choice==3) { printf("\n\t\t"); system("pause"); system("cls"); } else system("cls"); } }

    標簽: 數組 子系統

    上傳時間: 2020-06-11

    上傳用戶:ccccy

主站蜘蛛池模板: 蒲江县| 太康县| 兴海县| 获嘉县| 凤台县| 柳江县| 安远县| 彰武县| 十堰市| 黑山县| 廉江市| 博白县| 杭锦旗| 罗甸县| 宽甸| 揭阳市| 邓州市| 勐海县| 安福县| 蒙山县| 雷州市| 翁牛特旗| 富民县| 沾化县| 霍山县| 合水县| 自治县| 辽宁省| 蓬安县| 克什克腾旗| 望都县| 炎陵县| 工布江达县| 东明县| 翁源县| 江门市| 赣榆县| 盈江县| 门源| 安义县| 简阳市|