求解方程根的函數和一些微分方程迭代的函數,包括:求實系數代數方程全部根的牛頓-下山法,全區間積分的定步長龍格-庫塔法,積分一步的變步長龍格-庫塔法,積分一步的變步長基爾方法,求實系數代數方程全部根的qr方法
上傳時間: 2014-11-27
上傳用戶:onewq
一些矩陣運算的函數,包括兩個矩陣相加,兩個矩陣相減,兩個矩陣相乘,矩陣復制,矩陣求逆的全選主員高斯-約當法,矩陣的三角分解(LU分解),求Hessenberg矩陣全部特征根的QR法,約化一般實矩陣為Hessenberg矩陣的初等相似變換
上傳時間: 2013-12-08
上傳用戶:1079836864
用多種算法實現任給實對稱矩陣的所有特征值,包括雅克比方法、雅克比過關法和QR算法。
上傳時間: 2013-12-04
上傳用戶:xiaohuanhuan
Mapack可用來做矩陣運算 Mapack is a .NET class library for basic linear algebra computations. It supports the following matrix operations and properties: Multiplication, Addition, Subtraction, Determinant, Norm1, Norm2, Frobenius Norm, Infinity Norm, Rank, Condition, Trace, Cholesky, LU, QR, Single Value decomposition, Least Squares solver, Eigenproblem solver, Equation System solver. The algorithms were adapted from Mapack for COM, Lapack and the Java Matrix Package.
標簽: Mapack computations supports algebra
上傳時間: 2017-01-26
上傳用戶:tb_6877751
密碼學界牛人Victor Shoup用C++編寫數論類庫。 NTL is a high-performance, portable C++ library providing data structures and algorithms for arbitrary length integers for vectors, matrices, and polynomials over the integers and over finite fields and for arbitrary precision floating point arithmetic. NTL provides high quality implementations of state-of-the-art algorithms for: * arbitrary length integer arithmetic and arbitrary precision floating point arithmetic * polynomial arithmetic over the integers and finite fields including basic arithmetic, polynomial factorization, irreducibility testing, computation of minimal polynomials, traces, norms, and more * lattice basis reduction, including very robust and fast implementations of Schnorr-Euchner, block Korkin-Zolotarev reduction, and the new Schnorr-Horner pruning heuristic for block Korkin-Zolotarev * basic linear algebra over the integers, finite fields, and arbitrary precision floating point numbers.
標簽: high-performance providing portable library
上傳時間: 2014-01-04
上傳用戶:exxxds
SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations on high performance machines. The library is written in C and is callable from either C or Fortran. The library routines will perform an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions.
標簽: nonsymmetric solution SuperLU general
上傳時間: 2017-02-20
上傳用戶:lepoke
在MIMO系統中,排序的QR算法的MATLAB實現
標簽: MIMO
上傳時間: 2017-03-24
上傳用戶:ouyangtongze
Recovering 3-D structure from motion in noisy 2-D images is a problem addressed by many vision system researchers. By consistently tracking feature points of interest across multiple images using a methodology first described by Lucas-Kanade, a 3-D shape of the scene can be reconstructed using these features points using the factorization method developed by Tomasi-Kanade.
標簽: Recovering structure addressed problem
上傳時間: 2017-04-17
上傳用戶:xiaoxiang
此包包含了眾多矩陣處理程序,能夠滿足矩陣處理的一般要求,由于將各功能分開到不同的“.cpp”文件中,故使用時需要用戶自行選取更換合適自己使用的“.cpp”文件。其中,矩陣功能有:輸出矩陣、矩陣轉置、矩陣歸一化、判斷矩陣對稱、判斷矩陣對稱正定、全選主元法求矩陣行列式、全選主元高斯(Gauss)消去法求一般矩陣的秩、用全選主元高斯-約當(Gauss-Jordan)消去法計算實(復)矩陣的逆矩陣、用“變量循環重新編號法”法求對稱正定矩陣逆、特蘭持(Trench)法求托伯利茲(Toeplitz)矩陣逆、實矩陣LU分解、用豪斯荷爾德(Householder)變換對一般m*n階的實矩陣進行QR分解、對稱正定陣的喬里斯基(Cholesky)分解及求其行列式值、一般實矩陣的奇異值分解、廣義逆的奇異值分解。
上傳時間: 2013-12-27
上傳用戶:duoshen1989
RSA ( Rivest Shamir Adleman )is crypthograph system that used to give a secret information and digital signature . Its security based on Integer Factorization Problem (IFP). RSA uses an asymetric key. RSA was created by Rivest, Shamir, and Adleman in 1977. Every user have a pair of key, public key and private key. Public key (e) . You may choose any number for e with these requirements, 1< e <Æ (n), where Æ (n)= (p-1) (q-1) ( p and q are first-rate), gcd (e,Æ (n))=1 (gcd= greatest common divisor). Private key (d). d=(1/e) mod(Æ (n)) Encyption (C) . C=Mª mod(n), a = e (public key), n=pq Descryption (D) . D=C° mod(n), o = d (private key
標簽: crypthograph information Adleman Rivest
上傳時間: 2017-09-01
上傳用戶:chfanjiang