This paper presents an interactive technique that
produces static hairstyles by generating individual hair strands
of the desired shape and color, subject to the presence of gravity
and collisions. A variety of hairstyles can be generated by
adjusting the wisp parameters, while the deformation is solved
efficiently, accounting for the effects of gravity and collisions.
Wisps are generated employing statistical approaches. As for
hair deformation, we propose a method which is based on
physical simulation concepts but is simplified to efficiently
solve the static shape of hair. On top of the statistical wisp
model and the deformation solver, a constraint-based styler
is proposed to model artificial features that oppose the natural
flow of hair under gravity and hair elasticity, such as a hairpin.
Our technique spans a wider range of human hairstyles than
previously proposed methods, and the styles generated by this
technique are fairly realistic.
This example demonstrates the use of the ADC block and PWM blocks. The generated DSP code produces the pulse waveform whose duty cycle is changing as the voltage applied to ADC input changes. The waveform period is kept constant.
·詳細(xì)說明:雙音多頻的DTMF信號編碼程序,產(chǎn)生DTMF信號進行編碼。- The double sound multi- frequencies DTMF signal coded program, produces the DTMF signal to carry on the code.
Abstract: A perfect voltage reference produces a stable voltage independent of any external factors. Real-world voltagereferences, of course, are subject to errors caused by many external factors. One causeof these major errors istemperature. Without care, it is easy to operate a voltage reference outside its operating temperature range. Thisapplication note describes how references respond to temperature changes, and how self-heating can cause a voltagereference to operate outside its recommended temperature range. Once understood, this knowledge can then be used toavoid making this design error.
Power conversion by virtue of its basic role produces harmonics due to theslicing of either voltages or currents. To a large extent the pollution in theutility supply and the deterioration of the power quality has been generatedor created by non-linear converters. It is therefore ironic that power convertersshould now be used to clean up the pollution that they helped to create inthe first place.In a utility system, it is desirable to prevent harmonic currents (which resultin EMI and resonance problems) and limit reactive power flows (whichresult in transmission losses).Traditionally, shunt passive filters, comprised of tuned LC elements andcapacitor banks, were used to filter the harmonics and to compensate forreactive current due to non-linear loads. However, in practical applicationsthese methods have many disadvantages.
Typical industrial and automotive applications requiremultiple high current, low voltage power supply solutionsto drive everything from disc drives to microprocessors.For many of these applications, particularly thosethat have size constraints, the LT3501® dual step-downconverter is an attractive solution because it’s compactand inexpensive compared to a 2-chip solution. The dualconverter accommodates a 3V to 25V input voltage rangeand is capable of supplying up to 3A per channel. Thecircuit in Figure 1 produces 3.3V and 1.8V.