A fully differential amplifi er is often used to converta single-ended signal to a differential signal, a designwhich requires three signifi cant considerations: theimpedance of the single-ended source must match thesingle-ended impedance of the differential amplifi er,the amplifi er’s inputs must remain within the commonmode voltage limits and the input signal must be levelshifted to a signal that is centered at the desired outputcommon mode voltage.
Recent advances in low voltage silicon germaniumand BiCMOS processes have allowed the design andproduction of very high speed amplifi ers. Because theprocesses are low voltage, most of the amplifi er designshave incorporated differential inputs and outputs to regainand maximize total output signal swing. Since many lowvoltageapplications are single-ended, the questions arise,“How can I use a differential I/O amplifi er in a single-endedapplication?” and “What are the implications of suchuse?” This Design Note addresses some of the practicalimplications and demonstrates specifi c single-endedapplications using the 3GHz gain-bandwidth LTC6406differential I/O amplifi er.
This publication represents the largest LTC commitmentto an application note to date. No other application noteabsorbed as much effort, took so long or cost so much.This level of activity is justified by our belief that high speedmonolithic amplifiers greatly interest users.
Application considerations and circuits for the LT1001 and LT1002 single and dual precision amplifiers are illustrated in a number of circuits, including strain gauge signal conditioners, linearized platinum RTD circuits, an ultra precision dead zone circuit for motor servos and other examples.