人工神經(jīng)網(wǎng)絡(luò)(Aartificial Neural netWork,下簡(jiǎn)稱ANN)是模擬生物神經(jīng)元的結(jié)構(gòu)而提出的一種信息處理方法。早在1943年,已由心理學(xué)家Warren S.Mcculloch和數(shù)學(xué)家Walth H.Pitts提出神經(jīng)元數(shù)學(xué)模型,后被冷落了一段時(shí)間,80年代又迅猛興起[1]。ANN之所以受到人們的普遍關(guān)注,是由于它具有本質(zhì)的非線形特征、并行處理能力、強(qiáng)魯棒性以及自組織自學(xué)習(xí)的能力。其中研究得最為成熟的是誤差的反傳模型算法(BP算法,Back Propagation),它的網(wǎng)絡(luò)結(jié)構(gòu)及算法直觀、簡(jiǎn)單,在工業(yè)領(lǐng)域中應(yīng)用較多。
標(biāo)簽:
Aartificial
netWork
Neural
人工神經(jīng)網(wǎng)絡(luò)
上傳時(shí)間:
2014-01-03
上傳用戶:zhangzhenyu