In recent years, cellular voice networks have transformed into powerful packet-switched
access networks for both voice communication and Internet access. Evolving Universal
Mobile Telecommunication System (UMTS) networks and first Long Term Evolution
(LTE) installations now deliver bandwidths of several megabits per second to individual
users, and mobile access to the Internet from handheld devices and notebooks is no
longer perceived as slower than a Digital Subscriber Line (DSL) or cable connection.
Bandwidth and capacity demands, however, keep rising because of the increasing number
of people using the networks and because of bandwidth-intensive applications such as
video streaming. Thus, network manufacturers and network operators need to find ways
to continuously increase the capacity and performance of their cellular networks while
reducing the cost.
From the transition of analog to digital communication along with seamless mobility and
high computing power of small handheld devices, the wireless communications industry has
seen tremendous changes leading to the integration of several telecommunication networks,
devices and services over last 30 years. The rate of this progress and growth has increased
particularly in the past decade because people no longer use their devices and networks for
voice only, but demand bundle contents such as data download/streaming, HDTV, HD video ,
3D video conferencing with higher efficiency, seamless connectivity, intelligence, reliability
and better user experience. Although the challenges facing service providers and
telecommunication companies differ by product, region, market size, and their areas of
concentration but time to market, efficient utilization of their assets and revenue expansion,
have impacted significantly how to manage and conduct their business while maintaining
sufficient margin.
The Internet of Things is considered to be the next big opportunity, and challenge, for the
Internet engineering community, users of technology, companies and society as a whole. It
involves connecting embedded devices such as sensors, home appliances, weather stations
and even toys to Internet Protocol (IP) based networks. The number of IP-enabled embedded
devices is increasing rapidly, and although hard to estimate, will surely outnumber the
number of personal computers (PCs) and servers in the future. With the advances made over
the past decade in microcontroller,low-power radio, battery and microelectronic technology,
the trend in the industry is for smart embedded devices (called smart objects) to become
IP-enabled, and an integral part of the latest services on the Internet. These services are no
longer cyber, just including data created by humans, but are to become very connected to the
physical world around us by including sensor data, the monitoring and control of machines,
and other kinds of physical context. We call this latest frontier of the Internet, consisting of
wireless low-power embedded devices, the Wireless Embedded Internet. Applications that
this new frontier of the Internet enable are critical to the sustainability, efficiency and safety
of society and include home and building automation, healthcare, energy efficiency, smart
grids and environmental monitoring to name just a few.
Traditional modulation methods adopted by space agencies for transmit-
ting telecommand and telemetry data have incorporated subcarriers as a sim-
ple means of separating different data types as well ensuring no overlap
between the radio frequency (RF) carrier and the modulated data’s frequency
spectra.
The General Packet Radio Service (GPRS) allows an end user to send and
receive data in packet transfer mode within a public land mobile network
(PLMN) without using a permanent connection between the mobile station
(MS) and the external network during data transfer. This way, GPRS opti-
mizes the use of network and radio resources (RRs) since, unlike circuit-
switched mode, no connection between the MS and the external network is
established when there is no data flow in progress. Thus, this RR optimiza-
tion makes it possible for the operator to offer more attractive fees.
With the rapid expansion of wireless consumer products,there has been a con-
siderable increase in the need for radio-frequency (RF) planning, link plan-
ning, and propagation modeling.A network designer with no RF background
may find himself/herself designing a wireless network. A wide array of RF
planning software packages can provide some support, but there is no substi-
tute for a fundamental understanding of the propagation process and the lim-
itations of the models employed. Blind use of computer-aided design (CAD)
programs with no understanding of the physical fundamentals underlying the
process can be a recipe for disaster. Having witnessed the results of this
approach, I hope to spare others this frustration.
There are few technologies that have had a more profound effect on people’s lives
than mobile communications. As recently as twenty years ago no one had a mobile
phone, while today 1.4 billion men, women and children depend on them. This now
exceeds the number of landline users, where it took the preceding one hundred years
to reach the 1 billion mark. The ability to make mobile voice calls turns out to be the
answer to a deeply felt need across different cultures who simply want to
communicate.
This book is a result of the recent rapid advances in two related technologies: com-
munications and computers. Over the past few decades, communication systems
have increased in complexity to the point where system design and performance
analysis can no longer be conducted without a significant level of computer sup-
port. Many of the communication systems of fifty years ago were either power or
noise limited. A significant degrading effect in many of these systems was thermal
noise, which was modeled using the additive Gaussian noise channel.
Many good textbooks exist on probability and random processes written at the under-
graduate level to the research level. However, there is no one handy and ready book
that explains most of the essential topics, such as random variables and most of their
frequently used discrete and continuous probability distribution functions; moments,
transformation, and convergences of random variables; characteristic and generating
functions; estimation theory and the associated orthogonality principle; vector random
variables; random processes and their autocovariance and cross-covariance functions; sta-
tionarity concepts; and random processes through linear systems and the associated
Wiener and Kalman filters.
Quality of Service ( QoS ) has always been in a world of its own, but as the technology
has been refi ned and has evolved in recent years, QOS usage has increased to the point
where it is now considered a necessary part of network design and operation. As with
most technologies, large - scale deployments have led to the technology becoming more
mature, and QOS is no exception.