This book evolved over the past ten years from a set of lecture notes developed while teaching
the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching
this course evolved tremendously over these years in a number of directions, partly to address
our students' background (undeveloped formal skills outside of programming), and partly to
reect the maturing of the eld in general, as we have come to see it. The notes increasingly
crystallized into a narrative, and we progressively structured the course to emphasize the
?story line? implicit in the progression of the material. As a result, the topics were carefully
selected and clustered. No attempt was made to be encyclopedic, and this freed us to include
topics traditionally de-emphasized or omitted from most Algorithms books.
基本的編輯工具(GENERAL EDITING FACILITIES)
對象放置(Object Placement)
ISIS支持多種類型的對象,每一類型對象的具體作用和功能將在下一章給出。雖然類型不同,但放置對象的基本步驟都是一樣的。
放置對象的步驟如下(To place an object:)
1.根據對象的類別在工具箱選擇相應模式的圖標(mode icon)。
2. Select the sub-mode icon for the specific type of object.
2、根據對象的具體類型選擇子模式圖標(sub-mode icon)。
3、如果對象類型是元件、端點、管腳、圖形、符號或標記,從選擇器里(selector)選擇你想要的對象的名字。對于元件、端點、管腳和符號,可能首先需要從庫中調出。
4、如果對象是有方向的,將會在預覽窗口顯示出來,你可以通過點擊旋轉和鏡象圖標來調整對象的朝向。
5、最后,指向編輯窗口并點擊鼠標左鍵放置對象。對于不同的對象,確切的步驟可能略有不同,但你會發現和其它的圖形編輯軟件是類似的,而且很直觀。
選中對象(Tagging an Object)
用鼠標指向對象并點擊右鍵可以選中該對象。該操作選中對象并使其高亮顯示,然后可以進行編輯。
Abstract: Using a wafer-level package (WLP) can reduce the overall size and cost of your solution.However when using a WLP IC, the printed circuit board (PCB) layout can become more complex and, ifnot carefully planned, result in an unreliable design. This article presents some PCB designconsiderations and general recommendations for choosing a 0.4mm- or 0.5mm-pitch WLP for yourapplication.
This application note provides users with a general understanding of the SVF and XSVF fileformats as they apply to Xilinx devices. Some familiarity with IEEE STD 1149.1 (JTAG) isassumed. For information on using Serial Vector Format (SVF) and Xilinx Serial Vector Format(XSVF) files in embedded programming applications
USB接口控制器參考設計,xilinx提供VHDL代碼 usb xilinx vhdl
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
This document provides practical, common guidelines for incorporating PCI Express interconnect
layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10-
layer or more server baseboard designs. Guidelines and constraints in this document are intended
for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI
Express devices located on the same baseboard (chip-to-chip routing) and interconnects between
a PCI Express device located “down” on the baseboard and a device located “up” on an add-in
card attached through a connector.
This document is intended to cover all major components of the physical interconnect including
design guidelines for the PCB traces, vias and AC coupling capacitors, as well as add-in card
edge-finger and connector considerations. The intent of the guidelines and examples is to help
ensure that good high-speed signal design practices are used and that the timing/jitter and
loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect.
However, while general physical guidelines and suggestions are given, they may not necessarily
guarantee adequate performance of the interconnect for all layouts and implementations.
Therefore, designers should consider modeling and simulation of the interconnect in order to
ensure compliance to all applicable specifications.
The document is composed of two main sections. The first section provides an overview of
general topology and interconnect guidelines. The second section concentrates on physical layout
constraints where bulleted items at the beginning of a topic highlight important constraints, while
the narrative that follows offers additional insight.
基于通用集成運算放大器,利用MASON公式設計了一個多功能二階通用濾波器,能同時或分別實現低通、高通和帶通濾波,也能設計成一個正交振蕩器。電路的極點頻率和品質因數能夠獨立、精確地調節。電路使用4個集成運放、2個電容和11個電阻,所有集成運放的反相端虛地。利用計算機仿真電路的通用濾波功能、極點頻率和品質因數的獨立控制和正交正弦振蕩,從而證明該濾波器正確有效。
Abstract:
A new multifunctional second-order filter based on OPs was presented by MASON formula. Functions, such as high-pass, band-pass, low-pass filtering, can be realized respectively and simultaneously, and can become a quadrature oscillator by modifying resistance ratio. Its pole angular frequency and quality factor can be tuned accurately and independently. The circuit presented contains four OPs, two capacitors, and eleven resistances, and inverting input of all OPs is virtual ground. Its general filtering, the independent control of pole frequency and quality factor and quadrature sinusoidal oscillation were simulated by computer, and the result shows that the presented circuit is valid and effective.