#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789
The concept of smart cities emerged few years ago as a new vision for urban development that aims to integrate multiple information and communication technology (ICT) solutions in a secure fashion to manage a city’s assets. Modern ICT infrastructure and e-services should fuel sustainable growth and quality of life, enabled by a wise and participative management of natural resources to be ensured by citizens and government. The need to build smart cities became a requirement that relies on urban development that should take charge of the new infrastructures for smart cities (broadband infrastructures, wireless sensor networks, Internet-based networked applications, open data and open platforms) and provide various smart services and enablers in various domains including healthcare, energy, education, environmental management, transportation, mobility and public safety.
上傳時間: 2020-05-25
上傳用戶:shancjb
Recent years have seen a rapid development of neural network control tech- niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings.
標簽: Stable_adaptive_neural_network_co ntrol
上傳時間: 2020-06-10
上傳用戶:shancjb
AR0231AT7C00XUEA0-DRBR(RGB濾光)安森美半導體推出采用突破性減少LED閃爍 (LFM)技術的新的230萬像素CMOS圖像傳感器樣品AR0231AT,為汽車先進駕駛輔助系統(ADAS)應用確立了一個新基準。新器件能捕獲1080p高動態范圍(HDR)視頻,還具備支持汽車安全完整性等級B(ASIL B)的特性。LFM技術(專利申請中)消除交通信號燈和汽車LED照明的高頻LED閃爍,令交通信號閱讀算法能于所有光照條件下工作。AR0231AT具有1/2.7英寸(6.82 mm)光學格式和1928(水平) x 1208(垂直)有源像素陣列。它采用最新的3.0微米背照式(BSI)像素及安森美半導體的DR-Pix?技術,提供雙轉換增益以在所有光照條件下提升性能。它以線性、HDR或LFM模式捕獲圖像,并提供模式間的幀到幀情境切換。 AR0231AT提供達4重曝光的HDR,以出色的噪聲性能捕獲超過120dB的動態范圍。AR0231AT能同步支持多個攝相機,以易于在汽車應用中實現多個傳感器節點,和通過一個簡單的雙線串行接口實現用戶可編程性。它還有多個數據接口,包括MIPI(移動產業處理器接口)、并行和HiSPi(高速串行像素接口)。其它關鍵特性還包括可選自動化或用戶控制的黑電平控制,支持擴頻時鐘輸入和提供多色濾波陣列選擇。封裝和現狀:AR0231AT采用11 mm x 10 mm iBGA-121封裝,現提供工程樣品。工作溫度范圍為-40℃至105℃(環境溫度),將完全通過AEC-Q100認證。
標簽: 圖像傳感器
上傳時間: 2022-06-27
上傳用戶:XuVshu
Neural networks : an introduction / B. Muller, J.Reinhardt. 此書的配套軟盤
標簽: B. introduction Reinhardt networks
上傳時間: 2013-12-13
上傳用戶:wyc199288
Bing is a point-to-point bandwidth measurement tool (hence the b ), based on ping. Bing determines the real (raw, as opposed to available or average) throughput on a link by measuring ICMP echo requests roundtrip times for different packet sizes for each end of the link
標簽: Bing point-to-point measurement determines
上傳時間: 2015-09-15
上傳用戶:lgnf
This I develops based on the B/S structure student managementsystem management system, hoped brings a help to the novice
標簽: managementsystem management structure develops
上傳時間: 2014-01-07
上傳用戶:釣鰲牧馬
Artificial Intelligence Neural Networks Algorithms Applications and Programming Techniques Addison Wesley,
標簽: Applications Intelligence Programming Artificial
上傳時間: 2014-01-15
上傳用戶:yoleeson
《Neural Network Design》 Martin T. Hagan, Howard B. Demuth, Mark H. Beale 一書中相關matlab演示程序軟件包。對于學習很有參考。
上傳時間: 2016-03-19
上傳用戶:zhanditian
the load forecast based on Neural Networks,use the MATLAB
標簽: the forecast Networks Neural
上傳時間: 2016-12-21
上傳用戶:iswlkje