The fi rst edition of this book came about because Regina Lundgren had always been
fascinated with communication. She started writing novels in the third grade. When she
was asked on her fi rst day at the University of Washington what she hoped to do with her
degree in scientifi c and technical communication, she replied, “I want to write environ-
mental impact statements.” When Patricia Clark hired her to work at the Pacifi c Northwest
National Laboratory to do just that, she was overjoyed.
Rapid progress in information and communications technology (ICT) induces
improved and new telecommunications services and contributes greatly to society
in general and to vendors and network and service providers. In addition to existing
services such as telephony or leased line services, spread of the Internet, the Internet
Protocol (IP) phone, and new communications services like IPTV are making great
progress with the development of digital subscriber lines (DSL) and high - speed
communications technologies like fi ber to the home (FTTH).
The digital dilemma: Telecoms fi rms prepare for
the future is an Economist Intelligence Unit
(EIU) report commissioned by WIPRO. The report
strives to identify the key issues that companies
within the telecoms sector are facing as they
attempt to reshape their businesses to compete
in a more digitised world.
During the past three decades, the world has seen signifi cant changes in the telecom-
munications industry. There has been rapid growth in wireless communications, as
seen by large expansion in mobile systems. Wireless communications have moved
from fi rst-generation (1G) systems primarily focused on voice communications to
third-generation (3G) systems dealing with Internet connectivity and multi-media
applications. The fourth-generation (4G) systems will be designed to connect wire-
less personal area networks (WPANs), wireless local area networks (WLANs) and
wireless wide-area networks (WWANs).
The term “ smart grid ” defi nes a self - healing network equipped with dynamic optimiza-
tion techniques that use real - time measurements to minimize network losses, maintain
voltage levels, increase reliability, and improve asset management. The operational data
collected by the smart grid and its sub - systems will allow system operators to rapidly
identify the best strategy to secure against attacks, vulnerability, and so on, caused by
various contingencies. However, the smart grid fi rst depends upon identifying and
researching key performance measures, designing and testing appropriate tools, and
developing the proper education curriculum to equip current and future personnel with
the knowledge and skills for deployment of this highly advanced system.
n recent years, there have been many books published on power system optimization.
Most of these books do not cover applications of artifi cial intelligence based methods.
Moreover, with the recent increase of artifi cial intelligence applications in various fi elds,
it is becoming a new trend in solving optimization problems in engineering in general
due to its advantages of being simple and effi cient in tackling complex problems. For this
reason, the application of artifi cial intelligence in power systems has attracted the interest
of many researchers around the world during the last two decades. This book is a result
of our effort to provide information on the latest applications of artifi cial intelligence
to optimization problems in power systems before and after deregulation.