亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

Photographic

  • JPEG(Joint Photographic Expert Group,聯(lián)合攝影專家組)編碼的數(shù)據(jù)執(zhí)行解壓縮的各項(xiàng)功能.JPEG的VHDL實(shí)現(xiàn)代碼

    JPEG(Joint Photographic Expert Group,聯(lián)合攝影專家組)編碼的數(shù)據(jù)執(zhí)行解壓縮的各項(xiàng)功能.JPEG的VHDL實(shí)現(xiàn)代碼

    標(biāo)簽: JPEG Photographic Expert Group

    上傳時(shí)間: 2016-12-23

    上傳用戶:熊少鋒

  • JPEG2000算術(shù)編碼的研究與FPGA實(shí)現(xiàn)

    JPEG2000是由ISO/ITU-T組織下的IEC JTC1/SC29/WG1小組制定的下一代靜止圖像壓縮標(biāo)準(zhǔn).與JPEG(Joint Photographic Experts Group)相比,JPEG2000能夠提供更好的數(shù)據(jù)壓縮比,并且提供了一些JPEG所不具有的功能[1].JPEG2000具有的多種特性使得它具有廣泛的應(yīng)用前景.但是,JPEG2000是一個(gè)復(fù)雜編碼系統(tǒng),目前為止的軟件實(shí)現(xiàn)方案的執(zhí)行時(shí)間和所需的存儲(chǔ)量較大,若想將JPEG2000應(yīng)用于實(shí)際中,有著較大的困難,而用硬件電路實(shí)現(xiàn)JPEG2000或者其中的某些模塊,必然能夠減少JPEG200的執(zhí)行時(shí)間,因而具有重要的意義.本文首先簡單介紹了JPEG2000這一新的靜止圖像壓縮標(biāo)準(zhǔn),然后對(duì)算術(shù)編碼的原理及實(shí)現(xiàn)算法進(jìn)行了深入的研究,并重點(diǎn)探討了JPEG2000中算術(shù)編碼的硬件實(shí)現(xiàn)問題,給出了一種硬件最優(yōu)化的算術(shù)編碼實(shí)現(xiàn)方案.最后使用硬件描述語言(Very High Speed Integrated Circuit Hardware Description Language,VHDL)在寄存器傳輸級(jí)(Register Transfer Level,RTL描述了該硬件最優(yōu)化的算術(shù)編碼實(shí)現(xiàn)方案,并以Altera 20K200E FPGA為基礎(chǔ),在Active-HDL環(huán)境中進(jìn)行了功能仿真,在Quartus Ⅱ集成開發(fā)環(huán)境下完成了綜合以及后仿真,綜合得到的最高工作時(shí)鐘頻率達(dá)45.81MHz.在相同的輸入條件下,輸出結(jié)果表明,本文設(shè)計(jì)的硬件算術(shù)編碼器與實(shí)現(xiàn)JPEG2000的軟件:Jasper[2]中的算術(shù)編碼模塊相比,處理時(shí)間縮短了30﹪左右.因而本文的研究對(duì)于JPEG2000應(yīng)用于數(shù)字監(jiān)控系統(tǒng)等實(shí)際應(yīng)用有著重要的意義.

    標(biāo)簽: JPEG 2000 FPGA 算術(shù)編碼

    上傳時(shí)間: 2013-05-16

    上傳用戶:671145514

  • 基于FPGA的圖像處理算法及壓縮編碼

    本文以“機(jī)車車輛輪對(duì)動(dòng)態(tài)檢測(cè)裝置”為研究背景,以改進(jìn)提升裝置性能為目標(biāo),研究在Altera公司的FPGA(Field Programmable Gate Array)芯片Cyclone上實(shí)現(xiàn)圖像采集控制、圖像處理算法、JPEG(Joint Photographic Expert Group)壓縮編碼標(biāo)準(zhǔn)的基本系統(tǒng)。本文使用硬件描述語言Verilog,以RedLogic的RVDK開發(fā)板作為硬件平臺(tái),在開發(fā)工具OUARTUS2 6.0和MODELSIM SE 6.1B環(huán)境中完成軟核的設(shè)計(jì)與仿真驗(yàn)證。 數(shù)據(jù)采集部分完成的功能是將由模擬攝像機(jī)拍攝到的圖像信號(hào)進(jìn)行數(shù)字化,然后從數(shù)據(jù)流中提取有效數(shù)據(jù),加以適當(dāng)裁剪,最后將奇偶場(chǎng)圖像數(shù)據(jù)合并成幀,存儲(chǔ)到存儲(chǔ)器中。數(shù)字化及碼流產(chǎn)生的功能由SAA7113芯片完成,由FPGA對(duì)SAA7113芯片初始化設(shè)置、控制,并對(duì)數(shù)字化后的數(shù)據(jù)進(jìn)行操作。 圖像處理算法部分考慮到實(shí)時(shí)性與算法復(fù)雜度等因素,從裝置的圖像處理流程中有選擇性地實(shí)現(xiàn)了直方圖均衡化、中值濾波與邊緣檢測(cè)三種圖像處理算法。 壓縮編碼部分依據(jù)JPEG標(biāo)準(zhǔn)基本系統(tǒng)順序編碼模式,在FPGA上實(shí)現(xiàn)了DCT(Discrete Cosine Transform)變換、量化、Zig-Zag掃描、直流系數(shù)DPCM(Differential Pulse Code Modulation)編碼、交流系數(shù)RLC(Run Length code)編碼、霍夫曼編碼等主要步驟,最后用實(shí)際的圖像數(shù)據(jù)塊對(duì)系統(tǒng)進(jìn)行了驗(yàn)證。

    標(biāo)簽: FPGA 圖像處理 壓縮編碼 算法

    上傳時(shí)間: 2013-04-24

    上傳用戶:qazwsc

  • DIGITAL IMAGERY is pervasive in our world today. Consequently, standards for the efficient represen

    DIGITAL IMAGERY is pervasive in our world today. Consequently, standards for the efficient representation and interchange of digital images are essential. To date, some of the most successful still image compression standards have resulted from the ongoing work of the Joint Photographic Experts Group (JPEG). This group operates under the auspices of Joint Technical Committee 1, Subcommittee 29, Working Group 1 (JTC 1/SC 29/WG 1), a collaborative effort between the International Organization for Standardization (ISO) and International Telecommunication Union Standardization Sector (ITUT). Both the JPEG [1–3] and JPEG-LS [4–6] standards were born from the work of the JPEG committee. For the last few years, the JPEG committee has been working towards the establishment of a new standard known as JPEG 2000 (i.e., ISO/IEC 15444). The fruits of these labors are now coming to bear, as JPEG-2000 Part 1 (i.e., ISO/IEC 15444-1 [7]) has recently been approved as a new international standard.

    標(biāo)簽: Consequently efficient pervasive standards

    上傳時(shí)間: 2013-12-21

    上傳用戶:源弋弋

  • Deep-Learning-with-PyTorch

    We’re living through exciting times. The landscape of what computers can do is changing by the week. Tasks that only a few years ago were thought to require higher cognition are getting solved by machines at near-superhuman levels of per- formance. Tasks such as describing a Photographic image with a sentence in idiom- atic English, playing complex strategy game, and diagnosing a tumor from a radiological scan are all approachable now by a computer. Even more impressively, computers acquire the ability to solve such tasks through examples, rather than human-encoded of handcrafted rules.

    標(biāo)簽: Deep-Learning-with-PyTorch

    上傳時(shí)間: 2020-06-10

    上傳用戶:shancjb

主站蜘蛛池模板: 琼海市| 常宁市| 曲水县| 旅游| 九江市| 台南县| 清涧县| 平罗县| 电白县| 饶平县| 额敏县| 长垣县| 洛川县| 滦平县| 营口市| 夏邑县| 沙坪坝区| 麦盖提县| 正镶白旗| 抚顺市| 和平县| 博白县| 南华县| 塔城市| 潞西市| 太白县| 六枝特区| 南汇区| 永寿县| 左云县| 宜宾市| 临夏县| 兰西县| 兴文县| 灵川县| 舒兰市| 长岛县| 潜山县| 汉川市| 阜阳市| 上饶县|