20世紀(jì)90年代以來,為了緩解能源和環(huán)境對人類生活和社會發(fā)展的壓力,世界各國都投入了大量資金開發(fā)電動汽車。在日本、美國、法國等汽車強(qiáng)國已經(jīng)開發(fā)出一些商品化的電動汽車。我國在“十五”期間,國家電動汽車重大科技專項確立以燃料電池汽車、混合電動汽車、純電動汽車以及相關(guān)的多能源動力總成控制、驅(qū)動電機(jī)、動力蓄電池及燃料電池等關(guān)鍵零部件研發(fā)。 與其它驅(qū)動電機(jī)相比,永磁同步電動機(jī)具有高效率、高功率密度和良好的控制特性,受到人們的普遍關(guān)注,越來越多地應(yīng)用于電動汽車的驅(qū)動裝置中。本文課題以印度REVA公司小型純電動汽車驅(qū)動用永磁同步電動機(jī)及其控制器為研究對象,對永磁同步電動機(jī)本體及控制器硬件進(jìn)行了比較深入的研究,設(shè)計并制作了永磁同步電動機(jī)試驗樣機(jī)以及基于TMS320LF2407A DSP的永磁同步電動機(jī)控制器,在此基礎(chǔ)上展開了初步試驗研究。 本文首先比較了當(dāng)前常用電動汽車驅(qū)動電機(jī)的特點,并綜述了電力電子和計算機(jī)控制技術(shù)在汽車驅(qū)動中的應(yīng)用;然后分析永磁同步電機(jī)氣隙磁場對電機(jī)性能的影響,針對電動汽車驅(qū)動電機(jī)的特點,提出了T形轉(zhuǎn)子永磁同步電動機(jī),不僅使永磁同步電動機(jī)的氣隙磁場接近正弦同時解決了高速運(yùn)行時磁鋼的固定問題;同時,制作了基于TMS320LF2407A DSP和IPM模塊的永磁同步電動機(jī)矢量控制器,并對控制器進(jìn)行了驅(qū)動無刷直流電動機(jī)的負(fù)載實驗和永磁同步電機(jī)的空載實驗;最后,分析永磁同步電機(jī)矢量控制的數(shù)學(xué)模型,并建立了永磁同步電機(jī)的SVPWM驅(qū)動的仿真模型,進(jìn)行了id=0的矢量控制系統(tǒng)仿真,研究了永磁同步電機(jī)參數(shù)對系統(tǒng)動態(tài)響應(yīng)的影響。
標(biāo)簽: 電動汽車 永磁同步電動機(jī) 控制器
上傳時間: 2013-07-23
上傳用戶:cooran
風(fēng)光互補(bǔ)發(fā)電系統(tǒng)作為新能源技術(shù)應(yīng)用的重要組成部分越來越受到人們的青睞,所以將此作為新能源研究的切入點,進(jìn)行一些有益的嘗試和探索。 本文從太陽能電池的光生伏打效應(yīng)入手,推導(dǎo)出太陽能電池的U-I曲線,并以此作為最大功率跟蹤(MPPT)技術(shù)的理論基礎(chǔ)。針對小風(fēng)機(jī)的發(fā)電技術(shù)也存在的MPPT技術(shù),文章進(jìn)行了統(tǒng)一性研究,給出了新的控制策略--變步長擾動觀察控制。為了提高系統(tǒng)的充放電效率,文章還對三段式充放電、均衡充電、溫度補(bǔ)償?shù)刃铍姵爻潆娎碚撨M(jìn)行了闡述。 根據(jù)上述理論,結(jié)合工程實際,設(shè)計了風(fēng)光互補(bǔ)控制器的電路。利用電壓霍爾和電流霍爾實現(xiàn)了風(fēng)機(jī)電壓、太陽能電池電壓、蓄電池電壓和充電電流的實時采樣,利用TMS320F2812DSP的EVA與AD模塊軟件實現(xiàn)對蓄電池欠壓、過壓、運(yùn)行等模式的智能充放電管理。針對風(fēng)力發(fā)電機(jī)的輸出電壓波動大的問題,系統(tǒng)提供了硬件和軟件的風(fēng)機(jī)過速智能保護(hù)系統(tǒng)。本系統(tǒng)采用MPPT的控制策略提高了整個系統(tǒng)的效率,設(shè)計提供了一套LCD顯示界面和一組LED指示燈增強(qiáng)系統(tǒng)管理的友好性。為了解決風(fēng)光互補(bǔ)控制器芯片的供電問題,設(shè)計了一套以UC3843PWM芯片為核心的反激式輔助電源。該電源用硬件實現(xiàn)了電流內(nèi)環(huán)、電壓外環(huán)的雙環(huán)控制策略,提高了系統(tǒng)供電的可靠性和穩(wěn)定性。 研制出了一臺風(fēng)光互補(bǔ)控制器樣機(jī),進(jìn)行了有關(guān)實驗、檢測與調(diào)試。實驗波形和數(shù)據(jù)都顯示該系統(tǒng)運(yùn)行穩(wěn)定可靠,達(dá)到了設(shè)計要求。該方案可為風(fēng)光互補(bǔ)控制器的工程設(shè)計提供一定的參考。
上傳時間: 2013-04-24
上傳用戶:diets
直接轉(zhuǎn)矩控制技術(shù)是繼矢量控制技術(shù)之后交流調(diào)速領(lǐng)域中新興的控制技術(shù),它采用空間矢量的分析方法,在定子坐標(biāo)系下計算并控制轉(zhuǎn)矩和磁鏈,以獲得轉(zhuǎn)矩的高動態(tài)性能。比較于矢量控制,它省去了復(fù)雜的矢量變換,克服了對電機(jī)轉(zhuǎn)子參數(shù)的依賴性,具有轉(zhuǎn)矩響應(yīng)快的優(yōu)點。然而,異步電動機(jī)的直接轉(zhuǎn)矩控制系統(tǒng)存在轉(zhuǎn)矩、電流和磁鏈脈動較大,開關(guān)頻率不恒定的問題。本文在傳統(tǒng)直接轉(zhuǎn)矩控制的基礎(chǔ)上,針對其存在的缺點提出了基于空間矢量脈寬調(diào)制的直接轉(zhuǎn)矩控制策略。 這種新型的直接轉(zhuǎn)矩控制策略使空間矢量脈寬調(diào)制技術(shù)和直接轉(zhuǎn)矩控制技術(shù)相結(jié)合。把電動機(jī)和PWM逆變器看成一體,使電動機(jī)獲得賦值恒定的近似理想的圓形磁場,解決其轉(zhuǎn)矩、電流、磁鏈脈動大,開關(guān)頻率不恒定的問題。在論文撰寫的過程中做了如下工作: 根據(jù)電機(jī)原理和坐標(biāo)變換理論,建立定子正交α—β兩相靜止坐標(biāo)系下的異步電動機(jī)的數(shù)學(xué)模型,包括電機(jī)的磁鏈模型、轉(zhuǎn)矩模型和運(yùn)動方程。 設(shè)計PI控制器,該控制器把轉(zhuǎn)矩和磁鏈誤差信號轉(zhuǎn)換成參考電壓,然后通過坐標(biāo)變換把參考電壓變換成SVPWM模塊所需的指令電壓,對SVPWM模塊進(jìn)行控制。 設(shè)計SVPWM控制模塊,其中設(shè)計了期望電壓空間矢量的合成方法,矢量區(qū)段的判斷,計算了開關(guān)器件的導(dǎo)通時間和時刻。 通過理論分析和設(shè)計各個模塊,組成了控制系統(tǒng)逆變器部分的仿真模型。在MATLAB/SIMULINK仿真工具箱中搭建仿真模型,通過設(shè)置合理的仿真參數(shù)、電機(jī)參數(shù)、給定量參數(shù)以及PI控制器的控制參數(shù)對系統(tǒng)進(jìn)行仿真研究,從而在理論上驗證系統(tǒng)設(shè)計的正確性。 仿真實驗結(jié)果證明了這種基于空間矢量脈寬調(diào)制的直接轉(zhuǎn)矩控制方法可以有效改善直接轉(zhuǎn)矩控制系統(tǒng)的性能。減小傳統(tǒng)直接轉(zhuǎn)矩控制中的磁鏈和轉(zhuǎn)矩脈動,并使逆變器工作在恒定的開關(guān)頻率。最后總結(jié)論文所做的研究工作,并展望了今后的研究重點和方向。
標(biāo)簽: SVPWM 異步電動機(jī) 直接轉(zhuǎn)矩
上傳時間: 2013-04-24
上傳用戶:dancnc
本文以單元機(jī)組協(xié)調(diào)控制系統(tǒng)為研究對象,在分析了協(xié)調(diào)控制系統(tǒng)特性的基礎(chǔ)上,總結(jié)了實際運(yùn)行的協(xié)調(diào)控制系統(tǒng)中存在的問題和影響控制效果的原因。把汽包鍋爐單元機(jī)組簡化為一個具有雙輸入、雙輸出的被控對象以及做了一些合理假設(shè)的前提下對協(xié)調(diào)控制系統(tǒng)建立的動態(tài)數(shù)學(xué)模型進(jìn)行分析。 從快速滿足電網(wǎng)負(fù)荷指令的需求,抑制各種干擾,保證機(jī)組的穩(wěn)定運(yùn)行的中心任務(wù)出發(fā),首次提出采用智能PID控制器作為汽機(jī)的主控制器,解決常規(guī)單自由度PID控制器不能兼顧目標(biāo)跟蹤特性和抗干擾特性的問題,并在一定程度上解決了協(xié)調(diào)控制系統(tǒng)對鍋爐前饋回路過分依賴的問題。 針對鍋爐對象大遲延特性,利用模糊預(yù)估策略對過程的輸出進(jìn)行預(yù)測。補(bǔ)償了鍋爐側(cè)純延遲帶來的不利影響;而且還具備了模糊控制不依賴于系統(tǒng)的數(shù)學(xué)模型,具有對系統(tǒng)參數(shù)變化不敏感,對于非線性、時變時滯等特性,呈現(xiàn)出較好的魯棒性等特點,當(dāng)出現(xiàn)較大的誤差時,可以把系統(tǒng)從很大的偏離中拉回來,提高了系統(tǒng)的響應(yīng)速度和安全性。仿真試驗表明采用模糊預(yù)估能夠降低系統(tǒng)的超調(diào),取得較好的控制效果。 由于單元機(jī)組中的鍋爐與汽機(jī)為強(qiáng)耦合系統(tǒng),為了實現(xiàn)一對一的單一控制,決定采用神經(jīng)網(wǎng)絡(luò)多變量解禍控制,通過仿真證明,達(dá)到了很好的解耦效果。 為了從全局上優(yōu)化系統(tǒng)的控制行為,采用模糊控制策略對鍋爐和汽機(jī)的指令進(jìn)行智能化的調(diào)整和約束。根據(jù)不同的負(fù)荷階段、主要參數(shù)的變化情況及時調(diào)整有關(guān)的指令,使協(xié)調(diào)控制系統(tǒng)向著有利于全局優(yōu)化的方向調(diào)節(jié)。 本文將神經(jīng)網(wǎng)絡(luò)、模糊控制思想引入?yún)f(xié)調(diào)控制系統(tǒng),并在此基礎(chǔ)上構(gòu)造神經(jīng)網(wǎng)絡(luò)、模糊自適應(yīng)控制的智能PID控制方案。通過理論分析和仿真實驗證明了這一控制方法在電廠協(xié)調(diào)控制系統(tǒng)中的實用價值,和傳統(tǒng)的PID控制比較,這種智能控制算法有效的提高了負(fù)荷的響應(yīng)速率,保證了系統(tǒng)的品質(zhì),取得了很好的控制效果。
標(biāo)簽: 火電廠 單元機(jī)組 協(xié)調(diào)控制
上傳時間: 2013-04-24
上傳用戶:luke5347
隨著科學(xué)技術(shù)的發(fā)展,汽車結(jié)構(gòu)不斷完善,人們對汽車的性能更加關(guān)注。汽車本身是一個復(fù)雜的系統(tǒng),在使用過程中,隨著行駛里程的增加和使用時間的延續(xù),汽車技術(shù)狀況可能不斷惡化,需要定期進(jìn)行檢測。汽車底盤測功機(jī)是一種不解體檢驗汽車性能的檢測設(shè)備,采用現(xiàn)代電測和計算機(jī)技術(shù),模擬汽車在各種路面行駛阻力,使汽車的道路試驗項目移至室內(nèi)進(jìn)行,減少室外環(huán)境變化對測試的影響,能夠很好的改善試驗人員的試驗環(huán)境和提高測試精度。 本文首先介紹了汽車底盤測功機(jī)的發(fā)展歷史和研究現(xiàn)狀,闡明了研究汽車底盤測功機(jī)測控系統(tǒng)的目的和意義,給出了汽車底盤測功機(jī)的結(jié)構(gòu)和工作原理,在詳細(xì)分析汽車道路上和底盤測功機(jī)上運(yùn)行受力情況的基礎(chǔ)上,建立了測功機(jī)電模擬模型。采用電模擬阻力加載裝置,不僅省去了繁瑣的慣性飛輪裝置,簡化了底盤測功機(jī)的結(jié)構(gòu),而且實現(xiàn)了慣性阻力的無級模擬。在系統(tǒng)硬件上,設(shè)計了轉(zhuǎn)速轉(zhuǎn)矩信號的采集電路和前端信號處理電路,提高了采集數(shù)據(jù)的準(zhǔn)確性,保證系統(tǒng)的精度,并給出了勵磁控制電路的設(shè)計與實現(xiàn)。在通訊上,設(shè)計CAN和USB互相轉(zhuǎn)化的接口電路,不僅實現(xiàn)上下位機(jī)之間的通訊,而且還突破了傳統(tǒng)底盤測功機(jī)上下位機(jī)通訊速率慢的瓶頸。在控制策略上,采用積分分離PID算法,實現(xiàn)轉(zhuǎn)速、勵磁電流和轉(zhuǎn)矩、勵磁電流的兩個雙閉環(huán)控制器,滿足了汽車底盤測功機(jī)不同運(yùn)行狀況的需求。在軟件上,采用模塊化編程的思想,從而增強(qiáng)了程序的可移植性和靈活性。最后,構(gòu)建了實驗平臺,對系統(tǒng)進(jìn)行了實驗研究,實驗結(jié)果表明:系統(tǒng)能滿足汽車性能測試的要求。
標(biāo)簽: 汽車底盤 測功 測控系統(tǒng)
上傳時間: 2013-06-12
上傳用戶:問題問題
變頻器在各行各業(yè)中的各種設(shè)備上迅速普及應(yīng)用,已成為當(dāng)今節(jié)電、改造傳統(tǒng)工業(yè)、改善工藝流程、提高生產(chǎn)過程自動化水平、提高產(chǎn)品質(zhì)量以及推動技術(shù)進(jìn)步的主要手段之一,是國民經(jīng)濟(jì)和生活中普遍需要的新技術(shù)。但是現(xiàn)有變頻器的調(diào)制算法尚存在一些缺點,如開關(guān)損耗大和共模電流大等,因此有必要研究和設(shè)計高性能調(diào)制算法的變頻控制器。鑒于此,開展了以下工業(yè)變頻器高性能調(diào)制算法為對象的研究內(nèi)容: 在闡述了工業(yè)變頻器系統(tǒng)的結(jié)構(gòu)、調(diào)制算法、調(diào)速算法的基礎(chǔ)上,結(jié)合數(shù)學(xué)模型,分析了共模電壓產(chǎn)生的原理、共模電流其影響和危害,給出了共模電壓和共模電流的關(guān)系??偨Y(jié)其他的抑制共模電壓的方案基礎(chǔ)上,提出一種新的共模電壓抑制SVPWM;還闡述了死區(qū)產(chǎn)生的原因及其影響,以及死區(qū)補(bǔ)償?shù)脑聿⑸鲜鰞蓚€調(diào)制算法利用MATLAB/SIMULINK軟件對該系統(tǒng)給予了全面的仿真分析。 變頻器硬件部分設(shè)計包括整流濾波電路、逆變器功率電路、上電保護(hù)電路、DSP控制系統(tǒng)及其外圍電路、IGBT驅(qū)動及保護(hù)電路以及反激式開關(guān)電源,對于傳感器檢測濾波電路的具體電路參數(shù)設(shè)計,是在PSPICE上仿真基礎(chǔ)上得出。并在考慮成本、EMC、效率等因素后考慮完成了所有硬件相關(guān)的原理圖繪制和PCB繪制; 變頻器軟件部分設(shè)計包括主程序、鍵盤掃描程序、系統(tǒng)狀態(tài)處理程序、PWM發(fā)送中斷程序、電機(jī)啟動函數(shù)、電壓調(diào)整程序、AD采樣中斷程序以及故障保護(hù)中斷程序。在實現(xiàn)一般SVPWM的基礎(chǔ)上,根據(jù)之前理論和仿真得到的共模電壓抑制SVPWM、以及死區(qū)補(bǔ)償算法,將這兩個對SVPWM進(jìn)行改進(jìn)的調(diào)制算法在硬件平臺上實現(xiàn)。 在硬件電路完成設(shè)計的各個階段,逐漸編制相應(yīng)的控制程序,并進(jìn)行調(diào)試,并完成整個程序的編制和調(diào)試。此外,還調(diào)試了系統(tǒng)所需的反激式開關(guān)電源。整個系統(tǒng)調(diào)試中遇到了很多問題,如鍵盤消除抖動問題、共模電壓抑制SVPWM出現(xiàn)的直通現(xiàn)象等。最終完成了工業(yè)變頻器樣機(jī),并且采用的是文章中研究的調(diào)制算法,效果良好,達(dá)到設(shè)計的目的; 提出了一種將有源功率因數(shù)校正(PFC)技術(shù)引用到串級調(diào)速中來提高定子側(cè)功率因數(shù)的新方法。通過建立電動機(jī)折算到轉(zhuǎn)子側(cè)的等值電路,重點分析了有源PFC技術(shù)代替?zhèn)鹘y(tǒng)串級調(diào)速系統(tǒng)中的不控整流橋后,系統(tǒng)可以等效為轉(zhuǎn)子串電阻調(diào)速。得到了等效串電阻的計算公式和變化趨勢,對電動機(jī)功率因數(shù)、電磁轉(zhuǎn)矩脈動也進(jìn)行了分析,發(fā)現(xiàn)能夠比傳統(tǒng)串級調(diào)速時有所提升。鑒于電動機(jī)轉(zhuǎn)子側(cè)電勢頻率非常低,分析了有源PFC的具體實現(xiàn)的特殊考慮和參數(shù)選取方法,并基于對稱平衡的Scott變壓器和兩個單相有源PFC電路實現(xiàn)了繞線電動機(jī)轉(zhuǎn)子側(cè)的三相有源低頻PFC,得到超低紋波的直流輸出電壓。利用MATLAB建立了完整的仿真平臺,所得結(jié)果驗證了理論分析的正確性。
上傳時間: 2013-07-09
上傳用戶:qq442012091
統(tǒng)一潮流控制器(UPFC)作為一種典型的FACTS裝置,綜合了FACTS元件的多種靈活控制手段,能同時或選擇地控制線路的基本參數(shù)(電壓、阻抗、相角),也可交替地控制線路上的有功和無功潮流,還可獨立地提供可控的并聯(lián)無功補(bǔ)償。因此UPFC被認(rèn)為是最有創(chuàng)造性,功能最強(qiáng)大的FACTS元件。 首先,本文詳細(xì)分析了統(tǒng)一潮流控制器的基本結(jié)構(gòu)和工作原理。采用開關(guān)函數(shù)法建立了電壓源型變流器的數(shù)學(xué)模型,并推導(dǎo)了統(tǒng)一潮流控制器在abc三相坐標(biāo)系和dq旋轉(zhuǎn)坐標(biāo)系下的數(shù)學(xué)模型,該模型考慮到直流環(huán)節(jié)電容儲能的動態(tài)變化過程,從而使其更適合于系統(tǒng)的動態(tài)特性分析。本文討論的UPFC控制采用基于兩相旋轉(zhuǎn)坐標(biāo)系下的非線性解耦控制方案,在UPFC的精確模型下具有可快速跟蹤給定值的優(yōu)點,且在dq坐標(biāo)系下可以實現(xiàn)有功和無功功率的獨立控制;在電容電壓PI調(diào)節(jié)中加入電流反饋,使其更接近真實值。 其次,本論文在分析UPFC數(shù)學(xué)模型的基礎(chǔ)上建立了UPFC在MATLAB平臺上的仿真模型;然后利用MATLAB建立了三相環(huán)形電力系統(tǒng),將UPFC模型應(yīng)用到該系統(tǒng)中,著重研究了UPFC對電網(wǎng)電能質(zhì)量的影響。首先研究了UPFC對故障系統(tǒng)中電網(wǎng)功率的影響以及UPFC對提高故障系統(tǒng)功率穩(wěn)定性的作用;同時,對UPFC能夠抑制無故障系統(tǒng)中系統(tǒng)接入電網(wǎng)時的功率沖擊進(jìn)行了研究。最后,通過仿真波形研究了UPFC對電網(wǎng)故障中電壓跌落的補(bǔ)償作用以及UPFC對正常系統(tǒng)電壓的影響,結(jié)果發(fā)現(xiàn),UPFC可以保持故障中的系統(tǒng)電壓為正弦波。
上傳時間: 2013-04-24
上傳用戶:1406054127
果園收獲作業(yè)機(jī)械化、自動化是廣大果農(nóng)們關(guān)注的熱點問題,開展果樹采摘機(jī)器人研究,不僅對于適應(yīng)市場需求、降低勞動強(qiáng)度、提高經(jīng)濟(jì)效率有著一定的現(xiàn)實意義,而且對于跟蹤世界農(nóng)業(yè)新技術(shù)、促進(jìn)我國農(nóng)業(yè)科技進(jìn)步,加速農(nóng)業(yè)現(xiàn)代化進(jìn)程有著重大的歷史意義。 果樹采摘機(jī)器人是一個集環(huán)境感知、動態(tài)決策與規(guī)劃、行為控制與執(zhí)行等多種功能于一體的綜合系統(tǒng),它是由機(jī)械手固定在履帶式移動平臺上構(gòu)成的一類特殊的移動機(jī)器人系統(tǒng)。本文在國家“863”高技術(shù)項目“果樹采摘機(jī)器人關(guān)鍵技術(shù)研究”支持下,以自行設(shè)計的機(jī)器人機(jī)械結(jié)構(gòu)為研究對象,對果樹采摘機(jī)器人的控制系統(tǒng)進(jìn)行了分析、研究和設(shè)計,設(shè)計了視覺伺服控制器,并對采摘機(jī)器人避障技術(shù)進(jìn)行了探討。主要工作如下: 首先,分析了果樹采摘機(jī)器人機(jī)械結(jié)構(gòu),介紹了機(jī)器人運(yùn)動學(xué)理論,根據(jù)自行設(shè)計的5自由度機(jī)械臂機(jī)械特性,采用幾何結(jié)構(gòu)算法,建立了果樹采摘機(jī)器人機(jī)械臂的正、逆運(yùn)動學(xué)方程。 其次,基于開放、先進(jìn)和可靠的考慮,采用開放式結(jié)構(gòu)設(shè)計機(jī)器人的控制系統(tǒng)。在開放式控制系統(tǒng)設(shè)計中,主要對果樹采摘機(jī)器人硬件組成部分主控計算機(jī)、運(yùn)動控制器、數(shù)據(jù)采集卡等進(jìn)行了選型設(shè)計。在分析果樹采摘機(jī)器人工作環(huán)境和工作特性的基礎(chǔ)上,設(shè)計了果樹采摘機(jī)器人的外圍傳感器。 再次,根據(jù)果樹采摘機(jī)器人機(jī)械結(jié)構(gòu)和控制系統(tǒng)結(jié)構(gòu)組成,設(shè)計了PID控制器,應(yīng)用于機(jī)器人視覺伺服控制,實現(xiàn)果樹采摘機(jī)器人的實時控制。在詳細(xì)論述關(guān)節(jié)式機(jī)器人避障方法的基礎(chǔ)上,對果樹采摘機(jī)器人避障方法進(jìn)行了初步的探討,提出了采用C—空間法實現(xiàn)采摘機(jī)器人實時避障。 最后,建立了傳感器實驗平臺,通過實驗驗證了所設(shè)計傳感器的正確性。利用固高PAN&TILT兩維數(shù)控轉(zhuǎn)臺和實地拍攝的蘋果圖像,對所提出的控制方法通過轉(zhuǎn)臺控制實驗進(jìn)行了驗證。
上傳時間: 2013-08-05
上傳用戶:liuxiaojie
異步電動機(jī)直接轉(zhuǎn)矩控制技術(shù)是近年來發(fā)展起來的一種新型、高性能交流調(diào)速技術(shù)。它利用電壓源型逆變器的工作過程,控制定子磁鏈的走或停,即調(diào)整定子磁鏈與轉(zhuǎn)子磁鏈的夾角大小,從而對電機(jī)轉(zhuǎn)矩進(jìn)行直接控制以獲得良好的動態(tài)性能。 論文首先探討了直接轉(zhuǎn)矩控制技術(shù)的現(xiàn)狀和發(fā)展趨勢,闡述了直接轉(zhuǎn)矩控制的基本原理,分析了常用的圓形磁鏈軌跡控制方法,詳細(xì)介紹了直接轉(zhuǎn)矩控制系統(tǒng)主要模塊的設(shè)計和實現(xiàn)。在分析交流異步電機(jī)動態(tài)數(shù)學(xué)模型、轉(zhuǎn)矩和磁鏈計算方程的基礎(chǔ)上,分析了直接轉(zhuǎn)矩控制的異步電動機(jī)在低速運(yùn)行時存在轉(zhuǎn)矩脈動和轉(zhuǎn)速波動較大的問題。基于占空比控制和離散占空比控制的異步電動機(jī)直接轉(zhuǎn)矩控制方法,由電機(jī)電磁轉(zhuǎn)矩公式和合成電壓矢量理論推導(dǎo)了直接計算占空比的方法,在不影響系統(tǒng)各方面性能指標(biāo)的情況下使降低轉(zhuǎn)矩脈動的計算量大大減少,方便了計算和使用。兩種方法均具有系統(tǒng)結(jié)構(gòu)簡單、占空比計算量小等優(yōu)點。研究結(jié)果驗證了這兩種方法的正確性和有效性。在第一種方法中加入了單神經(jīng)元控制器,使系統(tǒng)的動靜態(tài)性能得到了提高。接著對利用空間電壓矢量調(diào)制的直接轉(zhuǎn)矩控制系統(tǒng)進(jìn)行了研究。仿真結(jié)果表明此種方法能夠有效的降低轉(zhuǎn)矩脈動,使系統(tǒng)性能得到提高。 以TMS320F2812DSP為CPU搭建了直接轉(zhuǎn)矩控制硬件實驗平臺,調(diào)試了硬件電路。編寫了相關(guān)軟件流程圖和程序清單。
標(biāo)簽: DSP 異步電動機(jī) 直接轉(zhuǎn)矩控制
上傳時間: 2013-04-24
上傳用戶:cc111
隨著用戶對供電質(zhì)量要求的進(jìn)一步提高,模塊化UPS 并聯(lián)系統(tǒng)獲得了越來越廣泛的應(yīng)用。本文以模塊化UPS為研究對象,根據(jù)電路結(jié)構(gòu),將其分為直流部分模塊化和交流部分模塊化分別進(jìn)行討論。整流環(huán)節(jié)對Boost-PFC 電路進(jìn)行并聯(lián)控制,實現(xiàn)直流部分的模塊化;逆變環(huán)節(jié)在瞬時電壓PID 控制的基礎(chǔ)上,引入了瞬時均流的并聯(lián)控制策略,實現(xiàn)交流部分的模塊化。 介紹了有源功率因數(shù)校正技術(shù)的基本原理和控制思路,分析了單管雙Boost-PFC電路的工作過程,并將其簡化等效成常規(guī)的Boost 電路進(jìn)行分析和控制。根據(jù)控制系統(tǒng)的結(jié)構(gòu),分別對電流控制環(huán)和電壓控制環(huán)進(jìn)行了分析,得出了電感電流主要受電流指令的影響,而輸入輸出電壓差的影響則相對比較小;輸出電壓主要受參考給定指令電壓、緩啟給定指令電壓以及輸出電流等因素的影響。根據(jù)電流環(huán)和電壓環(huán)的解析表達(dá)式,給出了并聯(lián)控制的方法及原理。 對單相電路、三相電路以及多模塊并聯(lián)電路分別進(jìn)行了仿真驗證,對多模塊的并聯(lián)系統(tǒng)進(jìn)行了實驗驗證。建立了單相逆變器的數(shù)學(xué)模型,并加入PID 控制器,得到了輸出電壓的解析表達(dá)式,得出逆變器輸出電壓與參考給定電壓和輸出電流有關(guān)。利用極點配置的方法得到了模擬域PID 控制器參數(shù)的計算公式,并采用后向差分法,將其轉(zhuǎn)換到數(shù)字域,得到了數(shù)字PID 控制器參數(shù)與模擬域參數(shù)的換算關(guān)系。通過實驗測試和曲線擬合的辦法,得到了實際逆變器的電路參數(shù)。通過對所設(shè)計的數(shù)字PID 控制器進(jìn)行仿真和實驗,驗證了理論分析和計算。建立了PID 電壓閉環(huán)的多逆變器并聯(lián)系統(tǒng)數(shù)學(xué)模型,分析得出并聯(lián)系統(tǒng)的輸出電壓主要由系統(tǒng)中各模塊的平均給定電壓決定,同時也受較高次的輸出諧波電流影響,受輸出基波電流影響相對較??;環(huán)流主要受模塊的給定電壓與系統(tǒng)平均給定電壓的偏差影響。針對環(huán)流產(chǎn)生的原因,提出了一種瞬時均流控制策略來減小系統(tǒng)環(huán)流對給定電壓偏差的增益,從而達(dá)到瞬時均流的目的。 對兩逆變模塊并聯(lián)的系統(tǒng)在各種工況下進(jìn)行了仿真和實驗,驗證了理論分析的正確性和這種瞬時均流控制策略的可行性。
上傳時間: 2013-04-24
上傳用戶:ggwz258
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1