This texts contemporary approach focuses on the concepts of linear control systems, rather than computational mechanics. Straightforward coverage includes an integrated treatment of both classical and modern control system methods. The text emphasizes design with discussions of problem formulation, design criteria, PHYsical constraints, several design methods, and implementation of compensators.Discussions of topics not found in other texts--such as pole placement, model matching and robust tracking--add to the texts cutting-edge presentation. Students will appreciate the applications and discussions of practical aspects, including the leading problem in developing block diagrams, noise, disturbances, and plant perturbations. State feedback and state estimators are designed using state variable equations and transfer functions, offering a comparison of the two approaches. The incorporation of MATLAB throughout the text helps students to avoid time-consuming computation and concentrate on control system design and analysis
實驗教學一直是工科教學中不可或缺的組成部分,對培養學生的動手能力,獨立思考能力,創新思維與發散思維具有重要的作用。針對目前電路教學實驗中電路仿真實驗與實物電路實驗各自獨立,無法統一問題,提出將仿真電路實驗與實物電路實驗有機的結合同步操作,并使用Web發布實現遠程實驗操作。采用Multisim作為電路實驗仿真平臺,NI Eiviss II作為實物電路實驗硬件平臺,運用LabVIEW整合Multisim電路仿真實驗與實物電路實驗,實現仿真與實物實驗有機結合,兩種實驗可同步進行。學生在仿真實驗中先可探索實驗,然后做實物實驗。同時運用LabVIEW開發出實驗過程人機交互操作接口界面,使用過程中效果良好。Experimental teaching has always been an indispensable part of engineering education.And it always plays an important role in cultivating students'practical ability,independent thinking ability,innovative thinking and divergent thinking.But simulation experiment and PHYsical experiment cannot be unified in the circuit teaching experiment at present.In order to solve this problem,this paper proposes to combine organically the simulation circuit experiment with PHYsical circuit experiment,and synchronously operate them.This paper uses the WEB publishing to achieve remote experimental operation.Multisim is used as the circuit simulation platform,and NI Eiviss II is used as the PHYsical circuit hardware platform.Multisim circuit simulation experiment and PHYsical circuit experiment are implemented by LabVIEW to realize the combination of simulation experiment and PHYsical experiment.Students do explore experiments in simulation experiment firstly,and then do PHYsical experiment.And this paper uses LabVIEW to develop the experimental man-machine interface.
為了實時檢測血氧量,能使缺氧特別敏感的腦組織或心臟類疾病患者得到及時治療,采用近紅外雙波長透射式光電脈搏血氧測定法,以H橋電路對發射光源進行控制及通用運算放大器搭建濾波電路。運用參數理論計算和計算機仿真結果相對比的方法,通過Mu ltisim軟件對所設計電路進行仿真,仿真結果與理論參數計算相吻合,證明了電路參數設計的可行性,為血氧儀的實物制作提供參考。For real-time detection of oxygen saturation for timely treatment of the brain or heart,which are very sensitive to oxygen inadequacy,the near-infrared wavelengths double photoelectric pulse oximeter transmission method is adopted.The illuminant is controlled with the H bridge circuit and the filter circuit is built with general op-amps.Parameters by theoretical calculation is compared with the computer simulation results in Multisim and satisfactory results are obtained.It is shown that the design of the circuit parameters is feasible and can be a help in making the PHYsical blood-oxygen monitor.
This manual documents the Microcontroller profile of version 7 of the ARM? Architecture, the ARMv7-M architecture profile. For short definitions of all the ARMv7 profiles see About the ARMv7 architecture, and architecture profiles on page A1-20.ARMv7 is documented as a set of architecture profiles. The profiles are defined as follows: ARMv7-A The application profile for systems supporting the ARM and Thumb instruction sets, and requiring virtual address support in the memory management model. ARMv7-R The realtime profile for systems supporting the ARM and Thumb instruction sets, and requiring PHYsical address only support in the memory management model ARMv7-M The microcontroller profile for systems supporting only the Thumb instruction set, and where overall size and deterministic operation for an implementation are more important than absolute performance. While profiles were formally introduced with the ARMv7 development, the A-profile and R-profile have implicitly existed in earlier versions, associated with the Virtual Memory System Architecture (VMSA) and Protected Memory System Architecture (PMSA) respectively.