上下文無關文法(Context-Free Grammar, CFG)是一個4元組G=(V, T, S, P),其中,V和T是不相交的有限集,S∈V,P是一組有限的產生式規則集,形如A→α,其中A∈V,且α∈(V∪T)*。V的元素稱為非終結符,T的元素稱為終結符,S是一個特殊的非終結符,稱為文法開始符。
設G=(V, T, S, P)是一個CFG,則G產生的語言是所有可由G產生的字符串組成的集合,即L(G)={x∈T* | Sx}。一個語言L是上下文無關語言(Context-Free Language, CFL),當且僅當存在一個CFG G,使得L=L(G)。 *⇒
例如,設文法G:S→AB
A→aA|a
B→bB|b
則L(G)={a^nb^m | n,m>=1}
其中非終結符都是大寫字母,開始符都是S,終結符都是小寫字母。
標簽:
Context-Free
Grammar
CFG
上傳時間:
2013-12-10
上傳用戶:gaojiao1999
圖論中最小生成樹Kruskal算法 及畫圖程序 M-函數
格式 [Wt,Pp]=mintreek(n,W):n為圖頂點數,W為圖的帶權鄰接矩陣,不構成邊的兩頂點之間的權用inf表示。顯示最小生成樹的邊及頂點, Wt為最小生成樹的權,Pp(:,1:2)為最小生成樹邊的兩頂點,Pp(:,3)為最小生成樹的邊權,Pp(:,4)為最小生成樹邊的序號 附圖,紅色連線為最小生成樹的圖
例如
n=6 w=inf*ones(6)
w(1,[2,3,4])=[6,1,5] w(2,[3,5])=[5,3]
w(3,[4,5,6])=[5,6,4] w(4,6)=2 w(5,6)=6
[a,b]=mintreek(n,w)
標簽:
mintreek
Kruskal
Wt
Pp
上傳時間:
2015-11-30
上傳用戶:dreamboy36